Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Varicella zoster virus vasculopathy

Maria A Nagel, MD
Section Editor
Martin S Hirsch, MD
Deputy Editor
Jennifer Mitty, MD, MPH


Varicella zoster virus (VZV) infection of intra- and extracranial arteries (VZV vasculopathy) may be associated with a granulomatous vasculitis characterized by vessel wall damage and transmural inflammation, with multinucleated giant cells and/or epithelioid macrophages. VZV vasculopathy has previously been called granulomatous angiitis, VZV vasculitis, or post-varicella arteriopathy.

The clinical spectrum of VZV vasculopathy may include intracerebral VZV vasculopathy, giant cell arteritis, and granulomatous aortitis. A subset of patients can have specific ocular and motor findings known as herpes zoster ophthalmicus with delayed contralateral hemiparesis. Intracerebral VZV vasculopathy can occur in patients of all ages after either primary infection with VZV (varicella; chickenpox) or after viral reactivation (zoster; shingles) [1]; however, other forms of VZV vasculopathy (eg, giant cell arteritis) are primarily diseases of older adults.

This topic provides an overview of intracerebral VZV vasculopathy, as well as other forms of vasculopathy associated with VZV. Topic reviews that describe other clinical manifestations and complications of chickenpox and herpes zoster are found elsewhere. (See "Epidemiology of varicella-zoster virus infection: Chickenpox" and "Treatment of varicella (chickenpox) infection" and "Clinical manifestations of varicella-zoster virus infection: Herpes zoster".)


Varicella zoster virus (VZV), a ubiquitous DNA virus, is one of eight known human herpesviruses. Primary infection occurs via aerosols from skin vesicles from an infected person with varicella or zoster, resulting in the characteristic disseminated rash of varicella. (See "Clinical features of varicella-zoster virus infection: Chickenpox".)

After primary infection, VZV becomes latent within neurons in cranial nerve, dorsal root, and autonomic ganglia along the entire neuraxis [2-5]. More than 95 percent of the adult population harbors latent VZV. A decline in virus-specific cell-mediated immunity to VZV in older and immunocompromised individuals results in virus reactivation in one or more ganglia. VZV reactivation most commonly manifests as herpes zoster (ie, shingles). (See "Clinical manifestations of varicella-zoster virus infection: Herpes zoster" and "Epidemiology and pathogenesis of varicella-zoster virus infection: Herpes zoster".)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Dec 06, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol 2009; 8:731.
  2. Gilden DH, Vafai A, Shtram Y, et al. Varicella-zoster virus DNA in human sensory ganglia. Nature 1983; 306:478.
  3. Mahalingam R, Wellish M, Wolf W, et al. Latent varicella-zoster viral DNA in human trigeminal and thoracic ganglia. N Engl J Med 1990; 323:627.
  4. Nagel MA, Rempel A, Huntington J, et al. Frequency and abundance of alphaherpesvirus DNA in human thoracic sympathetic ganglia. J Virol 2014; 88:8189.
  5. Cohrs RJ, Gilden DH. Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J Virol 2007; 81:2950.
  6. Gilden DH, Kleinschmidt-DeMasters BK, Wellish M, et al. Varicella zoster virus, a cause of waxing and waning vasculitis: the New England Journal of Medicine case 5-1995 revisited. Neurology 1996; 47:1441.
  7. Kleinschmidt-DeMasters BK, Gilden DH. Varicella-Zoster virus infections of the nervous system: clinical and pathologic correlates. Arch Pathol Lab Med 2001; 125:770.
  8. Mayberg M, Langer RS, Zervas NT, Moskowitz MA. Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headaches in man. Science 1981; 213:228.
  9. Mayberg MR, Zervas NT, Moskowitz MA. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 1984; 223:46.
  10. Saito K, Moskowitz MA. Contributions from the upper cervical dorsal roots and trigeminal ganglia to the feline circle of Willis. Stroke 1989; 20:524.
  11. Linnemann CC Jr, Alvira MM. Pathogenesis of varicella-zoster angiitis in the CNS. Arch Neurol 1980; 37:239.
  12. Doyle PW, Gibson G, Dolman CL. Herpes zoster ophthalmicus with contralateral hemiplegia: identification of cause. Ann Neurol 1983; 14:84.
  13. Eidelberg D, Sotrel A, Horoupian DS, et al. Thrombotic cerebral vasculopathy associated with herpes zoster. Ann Neurol 1986; 19:7.
  14. Morgello S, Block GA, Price RW, Petito CK. Varicella-zoster virus leukoencephalitis and cerebral vasculopathy. Arch Pathol Lab Med 1988; 112:173.
  15. Gray F, Bélec L, Lescs MC, et al. Varicella-zoster virus infection of the central nervous system in the acquired immune deficiency syndrome. Brain 1994; 117 ( Pt 5):987.
  16. Amlie-Lefond C, Kleinschmidt-DeMasters BK, Mahalingam R, et al. The vasculopathy of varicella-zoster virus encephalitis. Ann Neurol 1995; 37:784.
  17. Melanson M, Chalk C, Georgevich L, et al. Varicella-zoster virus DNA in CSF and arteries in delayed contralateral hemiplegia: evidence for viral invasion of cerebral arteries. Neurology 1996; 47:569.
  18. Kleinschmidt-DeMasters BK, Mahalingam R, Shimek C, et al. Profound cerebrospinal fluid pleocytosis and Froin's Syndrome secondary to widespread necrotizing vasculitis in an HIV-positive patient with varicella zoster virus encephalomyelitis. J Neurol Sci 1998; 159:213.
  19. Manco-Johnson MJ, Nuss R, Key N, et al. Lupus anticoagulant and protein S deficiency in children with postvaricella purpura fulminans or thrombosis. J Pediatr 1996; 128:319.
  20. Josephson C, Nuss R, Jacobson L, et al. The varicella-autoantibody syndrome. Pediatr Res 2001; 50:345.
  21. Massano J, Ferreira D, Toledo T, et al. Stroke and multiple peripheral thrombotic events in an adult with varicella. Eur J Neurol 2008; 15:e90.
  22. Kurugöl Z, Vardar F, Ozkinay F, et al. Lupus anticoagulant and protein S deficiency in a child who developed disseminated intravascular coagulation in association with varicella. Turk J Pediatr 2001; 43:139.
  23. Regnault V, Boehlen F, Ozsahin H, et al. Anti-protein S antibodies following a varicella infection: detection, characterization and influence on thrombin generation. J Thromb Haemost 2005; 3:1243.
  24. Fukumoto S, Kinjo M, Hokamura K, Tanaka K. Subarachnoid hemorrhage and granulomatous angiitis of the basilar artery: demonstration of the varicella-zoster-virus in the basilar artery lesions. Stroke 1986; 17:1024.
  25. Constantinescu CS. Association of varicella-zoster virus with cervical artery dissection in 2 cases. Arch Neurol 2000; 57:427.
  26. Bhayani N, Ranade P, Clark NM, McGuinn M. Varicella-zoster virus and cerebral aneurysm: case report and review of the literature. Clin Infect Dis 2008; 47:e1.
  27. Askalan R, Laughlin S, Mayank S, et al. Chickenpox and stroke in childhood: a study of frequency and causation. Stroke 2001; 32:1257.
  28. Amlie-Lefond C, Bernard TJ, Sébire G, et al. Predictors of cerebral arteriopathy in children with arterial ischemic stroke: results of the International Pediatric Stroke Study. Circulation 2009; 119:1417.
  29. Braun KP, Bulder MM, Chabrier S, et al. The course and outcome of unilateral intracranial arteriopathy in 79 children with ischaemic stroke. Brain 2009; 132:544.
  30. Kang JH, Ho JD, Chen YH, Lin HC. Increased risk of stroke after a herpes zoster attack: a population-based follow-up study. Stroke 2009; 40:3443.
  31. Sreenivasan N, Basit S, Wohlfahrt J, et al. The short- and long-term risk of stroke after herpes zoster - a nationwide population-based cohort study. PLoS One 2013; 8:e69156.
  32. Breuer J, Pacou M, Gauthier A, Brown MM. Herpes zoster as a risk factor for stroke and TIA: a retrospective cohort study in the UK. Neurology 2014; 82:206.
  33. Langan SM, Minassian C, Smeeth L, Thomas SL. Risk of stroke following herpes zoster: a self-controlled case-series study. Clin Infect Dis 2014; 58:1497.
  34. Lin HC, Chien CW, Ho JD. Herpes zoster ophthalmicus and the risk of stroke: a population-based follow-up study. Neurology 2010; 74:792.
  35. Picard O, Brunereau L, Pelosse B, et al. Cerebral infarction associated with vasculitis due to varicella zoster virus in patients infected with the human immunodeficiency virus. Biomed Pharmacother 1997; 51:449.
  36. Berkefeld J, Enzensberger W, Lanfermann H. MRI in human immunodeficiency virus-associated cerebral vasculitis. Neuroradiology 2000; 42:526.
  37. Gray F, Mohr M, Rozenberg F, et al. Varicella-zoster virus encephalitis in acquired immunodeficiency syndrome: report of four cases. Neuropathol Appl Neurobiol 1992; 18:502.
  38. Petito CK, Cho ES, Lemann W, et al. Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol 1986; 45:635.
  39. Ryder JW, Croen K, Kleinschmidt-DeMasters BK, et al. Progressive encephalitis three months after resolution of cutaneous zoster in a patient with AIDS. Ann Neurol 1986; 19:182.
  40. Nagel MA, Cohrs RJ, Mahalingam R, et al. The varicella zoster virus vasculopathies: clinical, CSF, imaging, and virologic features. Neurology 2008; 70:853.
  41. Hovens MM, Vaessen N, Sijpkens YW, de Fijter JW. Unusual presentation of central nervous system manifestations of Varicella zoster virus vasculopathy in renal transplant recipients. Transpl Infect Dis 2007; 9:237.
  42. Hall S, Carlin L, Roach ES, McLean WT Jr. Herpes zoster and central retinal artery occlusion. Ann Neurol 1983; 13:217.
  43. Gilden DH, Lipton HL, Wolf JS, et al. Two patients with unusual forms of varicella-zoster virus vasculopathy. N Engl J Med 2002; 347:1500.
  44. Persson A, Bergström T, Lindh M, et al. Varicella-zoster virus CNS disease--viral load, clinical manifestations and sequels. J Clin Virol 2009; 46:249.
  45. Gregoire SM, van Pesch V, Goffette S, et al. Polymerase chain reaction analysis and oligoclonal antibody in the cerebrospinal fluid from 34 patients with varicella-zoster virus infection of the nervous system. J Neurol Neurosurg Psychiatry 2006; 77:938.
  46. Katchanov J, Siebert E, Klingebiel R, Endres M. Infectious vasculopathy of intracranial large- and medium-sized vessels in neurological intensive care unit: a clinico-radiological study. Neurocrit Care 2010; 12:369.
  47. Haug A, Mahalingam R, Cohrs RJ, et al. Recurrent polymorphonuclear pleocytosis with increased red blood cells caused by varicella zoster virus infection of the central nervous system: Case report and review of the literature. J Neurol Sci 2010; 292:85.
  48. Schubert J, Weissbrich B. Detection of virus-specific intrathecally synthesised immunoglobulin G with a fully automated enzyme immunoassay system. BMC Neurol 2007; 7:12.
  49. Nagel MA, Forghani B, Mahalingam R, et al. The value of detecting anti-VZV IgG antibody in CSF to diagnose VZV vasculopathy. Neurology 2007; 68:1069.
  50. Mathias M, Nagel MA, Khmeleva N, et al. VZV multifocal vasculopathy with ischemic optic neuropathy, acute retinal necrosis and temporal artery infection in the absence of zoster rash. J Neurol Sci 2013; 325:180.
  51. Teodoro T, Nagel MA, Geraldes R, et al. Biopsy-negative, varicella zoster virus (VZV)-positive giant cell arteritis, zoster, VZV encephalitis and ischemic optic neuropathy, all in one. J Neurol Sci 2014; 343:195.
  52. Nagel MA, Russman AN, Feit H, et al. VZV ischemic optic neuropathy and subclinical temporal artery infection without rash. Neurology 2013; 80:220.
  53. Salazar R, Russman AN, Nagel MA, et al. Varicella zoster virus ischemic optic neuropathy and subclinical temporal artery involvement. Arch Neurol 2011; 68:517.
  54. Nagel MA, Bennett JL, Khmeleva N, et al. Multifocal VZV vasculopathy with temporal artery infection mimics giant cell arteritis. Neurology 2013; 80:2017.
  55. Nagel MA, Khmeleva N, Boyer PJ, et al. Varicella zoster virus in the temporal artery of a patient with giant cell arteritis. J Neurol Sci 2013; 335:228.
  56. Gilden D, White T, Khmeleva N, et al. VZV in biopsy-positive and -negative giant cell arteritis: Analysis of 100+ temporal arteries. Neurol Neuroimmunol Neuroinflamm 2016; 3:e216.
  57. Breuer GS, Nesher R, Reinus K, Nesher G. Association between histological features in temporal artery biopsies and clinical features of patients with giant cell arteritis. Isr Med Assoc J 2013; 15:271.
  58. Gilden D, White T, Boyer PJ, et al. Varicella Zoster Virus Infection in Granulomatous Arteritis of the Aorta. J Infect Dis 2016; 213:1866.