Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

The genodermatoses

Teresa S Wright, MD, FAAD, FAAP
Section Editors
Helen V Firth, DM, FRCP, DCH
Jennifer L Hand, MD
Deputy Editor
Rosamaria Corona, MD, DSc


An overview of the most commonly encountered inherited skin diseases is presented here. A few rarer disorders are also reviewed because of particular clinical importance in their pathogenesis or treatment. Internet resources that include information about these disorders include GeneClinics and Mendelian Inheritance in Man (OMIM).


The genodermatoses are a large group of inherited single-gene disorders with skin manifestations. Many of these disorders are rare. However, the recognition of their skin findings is important not only for the initiation of appropriate dermatologic therapy, but also for the detection of other associated abnormalities in these frequently multisystem disorders, including malignancy [1-3].


This group of genodermatoses is of particular importance because of the association of skin findings with the development of malignancies, both cutaneous and noncutaneous (table 1). Examples include basal cell nevus syndrome, Gardner syndrome, Peutz-Jeghers syndrome (PJS), and Xeroderma pigmentosum (XP).

Basal cell nevus syndrome — The basal cell nevus syndrome (nevoid basal cell carcinoma syndrome, Gorlin syndrome, MIM #109400) is a rare disorder of autosomal dominant inheritance that results from germline mutations of the human patched gene (PTCH). (See "Nevoid basal cell carcinoma syndrome".)

Affected patients have both developmental anomalies and postnatal tumors, especially multiple basal cell carcinomas (BCCs), usually by age 35 years. Most have the following clinical features:

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Sep 06, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Spitz JL. Genodermatoses: A Full-Color Clinical Guide to Genetic Skin Disorders, Williams & Wilkins, New York 1996.
  2. Sybert VP. Genetic Skin Disorders, Oxford University Press, New York 1997.
  3. Reyes MA, Eisen DB. Inherited syndromes. Dermatol Ther 2010; 23:606.
  4. Perniciaro C. Gardner's syndrome. Dermatol Clin 1995; 13:51.
  5. Griffith CD, Bisset WH. Peutz-Jeghers syndrome. Arch Dis Child 1980; 55:866.
  6. Scott RJ, Crooks R, Meldrum CJ, et al. Mutation analysis of the STK11/LKB1 gene and clinical characteristics of an Australian series of Peutz-Jeghers syndrome patients. Clin Genet 2002; 62:282.
  7. Utsunomiya J, Gocho H, Miyanaga T, et al. Peutz-Jeghers syndrome: its natural course and management. Johns Hopkins Med J 1975; 136:71.
  8. Porter RM, Lane EB. Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet 2003; 19:278.
  9. Roop D. Defects in the barrier. Science 1995; 267:474.
  10. Oji V, Tadini G, Akiyama M, et al. Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol 2010; 63:607.
  11. Itin PH, Lautenschlager S. Palmoplantar keratoderma and associated syndromes. Semin Dermatol 1995; 14:152.
  12. Lucker GP, Van de Kerkhof PC, Steijlen PM. The hereditary palmoplantar keratoses: an updated review and classification. Br J Dermatol 1994; 131:1.
  13. Hereditary disorders of cornification. In: Hurwitz Clinical Pediatric Dermatology: A Textbook of Skin Disorders of Childhood and Adolescence, 3rd ed, Paller AS, Mancini AJ (Eds), W.B. Elsevier Saunders, Philadelphia 2006. p.107.
  14. Smith F. The molecular genetics of keratin disorders. Am J Clin Dermatol 2003; 4:347.
  15. Shah S, Boen M, Kenner-Bell B, et al. Pachyonychia congenita in pediatric patients: natural history, features, and impact. JAMA Dermatol 2014; 150:146.
  16. Eliason MJ, Leachman SA, Feng BJ, et al. A review of the clinical phenotype of 254 patients with genetically confirmed pachyonychia congenita. J Am Acad Dermatol 2012; 67:680.
  17. Sakuntabhai A, Ruiz-Perez V, Carter S, et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 1999; 21:271.
  18. Ringpfeil F, Raus A, DiGiovanna JJ, et al. Darier disease--novel mutations in ATP2A2 and genotype-phenotype correlation. Exp Dermatol 2001; 10:19.
  19. Burge S. Darier's disease--the clinical features and pathogenesis. Clin Exp Dermatol 1994; 19:193.
  20. Burge SM, Wilkinson JD. Darier-White disease: a review of the clinical features in 163 patients. J Am Acad Dermatol 1992; 27:40.
  21. Fine JD, Eady RA, Bauer EA, et al. The classification of inherited epidermolysis bullosa (EB): Report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J Am Acad Dermatol 2008; 58:931.
  22. Intong LR, Murrell DF. Inherited epidermolysis bullosa: new diagnostic criteria and classification. Clin Dermatol 2012; 30:70.
  23. Disorders of pigmentation. In: Hurwitz Clinical Pediatric Dermatology: A Textbook of Skin Disorders of Childhood and Adolescence, 3rd ed, Paller AS, Mancini AJ (Eds), W.B. Elsevier Saunders, Philadelphia 2006. p.265.
  24. Summers CG. Albinism: classification, clinical characteristics, and recent findings. Optom Vis Sci 2009; 86:659.
  25. Grønskov K, Ek J, Brondum-Nielsen K. Oculocutaneous albinism. Orphanet J Rare Dis 2007; 2:43.
  26. Rinchik EM, Bultman SJ, Horsthemke B, et al. A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature 1993; 361:72.
  27. Orlow SJ, Brilliant MH. The pink-eyed dilution locus controls the biogenesis of melanosomes and levels of melanosomal proteins in the eye. Exp Eye Res 1999; 68:147.
  28. Toyofuku K, Valencia JC, Kushimoto T, et al. The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase. Pigment Cell Res 2002; 15:217.
  29. Chen K, Manga P, Orlow SJ. Pink-eyed dilution protein controls the processing of tyrosinase. Mol Biol Cell 2002; 13:1953.
  30. Online Mendelian Inheritance in Man, OMIM ™. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), 2000. www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM (Accessed on January 18, 2006).
  31. Toyofuku K, Wada I, Valencia JC, et al. Oculocutaneous albinism types 1 and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wild-type proteins. FASEB J 2001; 15:2149.
  32. Brilliant MH. Oculocutaneous Albinism Type 4. In: GeneReviews, Pagon RA, Bird TD, Dolan CR, et al., editors (Eds), University of Washington, Seattle; 1993-, Seattle.
  33. King RA, Hearing VJ, Dreel DJ, Oetting WS. Albinism. In: Metabolic and Molecular Bases of Inherited Disease, 8th ed, Scriver CR, Beaudet AL, Sly WS, Valle D (Eds), McGraw-Hill, New York 2001. p.5587.
  34. Spritz RA. Molecular genetics of oculocutaneous albinism. Hum Mol Genet 1994; 3 Spec No:1469.
  35. Rosenberg T, Schwartz M. X-linked ocular albinism: prevalence and mutations--a national study. Eur J Hum Genet 1998; 6:570.
  36. van Dorp DB. Albinism, or the NOACH syndrome (the book of Enoch c.v. 1-20). Clin Genet 1987; 31:228.
  37. Albinism, ocular, type I;OA1. In: Online Mendelian Inheritance in Man. Johns Hopkins University. www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=300500 (Accessed on November 02, 2006).
  38. Shen B, Samaraweera P, Rosenberg B, Orlow SJ. Ocular albinism type 1: more than meets the eye. Pigment Cell Res 2001; 14:243.
  39. Oetting WS. New insights into ocular albinism type 1 (OA1): Mutations and polymorphisms of the OA1 gene. Hum Mutat 2002; 19:85.
  40. O'Donnell FE Jr, Green WR, Fleischman JA, Hambrick GW. X-linked ocular albinism in Blacks. Ocular albinism cum pigmento. Arch Ophthalmol 1978; 96:1189.
  41. Shiono T, Tsunoda M, Chida Y, et al. X linked ocular albinism in Japanese patients. Br J Ophthalmol 1995; 79:139.
  42. Lyle WM, Sangster JO, Williams TD. Albinism: an update and review of the literature. J Am Optom Assoc 1997; 68:623.
  43. Winship I, Gericke G, Beighton P. X-linked inheritance of ocular albinism with late-onset sensorineural deafness. Am J Med Genet 1984; 19:797.
  44. Winship IM, Babaya M, Ramesar RS. X-linked ocular albinism and sensorineural deafness: linkage to Xp22.3. Genomics 1993; 18:444.
  45. Albinism, ocular, with sensorineural deafness. In: Online Mendelian Inheritance in Man. Johns Hopkins University www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=103470 (Accessed on November 02, 2006).
  46. Spritz RA. Piebaldism, Waardenburg syndrome, and related disorders of melanocyte development. Semin Cutan Med Surg 1997; 16:15.
  47. Syrris P, Heathcote K, Carrozzo R, et al. Human piebaldism: six novel mutations of the proto-oncogene KIT. Hum Mutat 2002; 20:234.
  48. Dourmishev AL, Dourmishev LA, Schwartz RA, Janniger CK. Waardenburg syndrome. Int J Dermatol 1999; 38:656.
  49. Read AP, Newton VE. Waardenburg syndrome. J Med Genet 1997; 34:656.
  50. Nayak CS, Isaacson G. Worldwide distribution of Waardenburg syndrome. Ann Otol Rhinol Laryngol 2003; 112:817.
  51. Silan F, Zafer C, Onder I. Waardenburg syndrome in the Turkish deaf population. Genet Couns 2006; 17:41.
  52. Hart J, Miriyala K. Neural tube defects in Waardenburg syndrome: A case report and review of the literature. Am J Med Genet A 2017; 173:2472.
  53. Potterf SB, Furumura M, Dunn KJ, et al. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 2000; 107:1.
  54. Pingault V, Ente D, Dastot-Le Moal F, et al. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 2010; 31:391.
  55. Edery P, Attié T, Amiel J, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 1996; 12:442.
  56. McCallion AS, Chakravarti A. EDNRB/EDN3 and Hirschsprung disease type II. Pigment Cell Res 2001; 14:161.
  57. Pingault V, Bondurand N, Kuhlbrodt K, et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 1998; 18:171.
  58. Gutmann DH, Aylsworth A, Carey JC, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 1997; 278:51.
  59. Hurwitz S. Clinical Pediatric Dermatology, 2nd ed, WB Saunders, Philadelphia 1993.
  60. Lim JY, Kim H, Kim YH, et al. Merlin suppresses the SRE-dependent transcription by inhibiting the activation of Ras-ERK pathway. Biochem Biophys Res Commun 2003; 302:238.
  61. Kwiatkowski DJ, Short MP. Tuberous sclerosis. Arch Dermatol 1994; 130:348.
  62. Webb DW, Clarke A, Fryer A, Osborne JP. The cutaneous features of tuberous sclerosis: a population study. Br J Dermatol 1996; 135:1.
  63. Paller AS, Massey RB, Curtis MA, et al. Cutaneous granulomatous lesions in patients with ataxia-telangiectasia. J Pediatr 1991; 119:917.
  64. Murakawa GJ, McCalmot T, Frieden IJ. Chronic plaques in a patient with ataxia telangiectasia. Cutaneous granulomatous lesions in a patient with AT. Arch Dermatol 1998; 134:1145, 1148.
  65. Ringpfeil F, McGuigan K, Fuchsel L, et al. Pseudoxanthoma elasticum is a recessive disease characterized by compound heterozygosity. J Invest Dermatol 2006; 126:782.
  66. Le Saux O, Urban Z, Tschuch C, et al. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet 2000; 25:223.
  67. Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J. Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 2000; 97:6001.
  68. Bergen AA, Plomp AS, Schuurman EJ, et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet 2000; 25:228.
  69. Sherer DW, Sapadin AN, Lebwohl MG. Pseudoxanthoma elasticum: an update. Dermatology 1999; 199:3.
  70. Engelman MW, Fliegelman MT. Pseudoxanthoma elasticum. Cutis 1978; 21:837.
  71. Laube S, Moss C. Pseudoxanthoma elasticum. Arch Dis Child 2005; 90:754.
  72. Hardelin JP, Levilliers J, del Castillo I, et al. X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene. Proc Natl Acad Sci U S A 1992; 89:8190.
  73. Happle R. X-linked dominant chondrodysplasia punctata. Review of literature and report of a case. Hum Genet 1979; 53:65.
  74. Aradhya S, Woffendin H, Jakins T, et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 2001; 10:2171.
  75. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 2000; 405:466.
  76. Fusco F, Fimiani G, Tadini G, et al. Clinical diagnosis of incontinentia pigmenti in a cohort of male patients. J Am Acad Dermatol 2007; 56:264.
  77. Chen CJ, Han IC, Tian J, et al. Extended Follow-up of Treated and Untreated Retinopathy in Incontinentia Pigmenti: Analysis of Peripheral Vascular Changes and Incidence of Retinal Detachment. JAMA Ophthalmol 2015; 133:542.
  78. Sahn EE, Davidson LS. Incontinentia pigmenti: three cases with unusual features. J Am Acad Dermatol 1994; 31:852.
  79. Dutheil P, Vabres P, Cayla MC, Enjolras O. Incontinentia pigmenti: late sequelae and genotypic diagnosis: a three-generation study of four patients. Pediatr Dermatol 1995; 12:107.
  80. Smahi A, Courtois G, Rabia SH, et al. The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 2002; 11:2371.
  81. Moore DJ, Mallory SB. Goltz syndrome. Pediatr Dermatol 1989; 6:251.
  82. Goltz RW. Focal dermal hypoplasia syndrome. An update. Arch Dermatol 1992; 128:1108.
  83. Grzeschik KH, Bornholdt D, Oeffner F, et al. Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet 2007; 39:833.
  84. Wang X, Reid Sutton V, Omar Peraza-Llanes J, et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet 2007; 39:836.
  85. Carrol ED, Gennery AR, Flood TJ, et al. Anhidrotic ectodermal dysplasia and immunodeficiency: the role of NEMO. Arch Dis Child 2003; 88:340.
  86. Lind LK, Stecksén-Blicks C, Lejon K, Schmitt-Egenolf M. EDAR mutation in autosomal dominant hypohidrotic ectodermal dysplasia in two Swedish families. BMC Med Genet 2006; 7:80.
  87. Motil KJ, Fete TJ, Fraley JK, et al. Growth characteristics of children with ectodermal dysplasia syndromes. Pediatrics 2005; 116:e229.
  88. Masse JF, Pérusse R. Ectodermal dysplasia. Arch Dis Child 1994; 71:1.
  89. Zhang XJ, Chen JJ, Yang S, et al. A mutation in the connexin 30 gene in Chinese Han patients with hidrotic ectodermal dysplasia. J Dermatol Sci 2003; 32:11.
  90. Common JE, Becker D, Di WL, et al. Functional studies of human skin disease- and deafness-associated connexin 30 mutations. Biochem Biophys Res Commun 2002; 298:651.
  91. Chitty LS, Dennis N, Baraitser M. Hidrotic ectodermal dysplasia of hair, teeth, and nails: case reports and review. J Med Genet 1996; 33:707.
  92. Sutton VR. Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate Syndrome. In: GeneReviews [Internet], Pagon RA, Bird TD, Dolan CR, et al. (Eds), University of Washington, Seattle, Seattle; 1993-.
Topic Outline