UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 18

of 'Stages and architecture of normal sleep'

18
TI
Homer1a drives homeostatic scaling-down of excitatory synapses during sleep.
AU
Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL
SO
Science. 2017;355(6324):511. Epub 2017 Feb 2.
 
Sleep is an essential process that supports learning and memory by acting on synapses through poorly understood molecular mechanisms. Using biochemistry, proteomics, and imaging in mice, we find that during sleep, synapses undergo widespread alterations in composition and signaling, including weakening of synapses through removal and dephosphorylation of synaptic AMPA-type glutamate receptors. These changes are driven by the immediate early gene Homer1a and signaling from group I metabotropic glutamate receptors mGluR1/5. Homer1a serves as a molecular integrator of arousal and sleep need via the wake- and sleep-promoting neuromodulators, noradrenaline and adenosine, respectively. Our data suggest that homeostatic scaling-down, a global form of synaptic plasticity, is active during sleep to remodel synapses and participates in the consolidation of contextual memory.
AD
Solomon Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
PMID