Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Peroxisomal disorders

Ronald JA Wanders, PhD
Raphael Schiffmann, MD, MHSc
Section Editors
Marc C Patterson, MD, FRACP
Helen V Firth, DM, FRCP, DCH
Deputy Editor
Carrie Armsby, MD, MPH


Peroxisomes are subcellular organelles with a variable diameter ranging from 0.05 to 0.5 micron in diameter, and are present in all cells except erythrocytes. The highest concentration of peroxisomes is in the liver and kidney [1]. Although they are not present in mature erythrocytes, they are present during the early stages of erythrocyte development when membranes are formed.

Peroxisomes catalyze numerous catabolic and anabolic functions in cellular metabolism [2,3]. Catalytic functions include beta-oxidation of very long chain fatty acids (VLCFA); oxidation of pipecolic, phytanic, pristanic, and many dicarboxylic acids; and degradation of hydrogen peroxide by catalase [2-4]. Anabolic functions include synthesis of bile acids and plasmalogens, which are important components of cell membranes and myelin.

Peroxisomal disorders are a heterogeneous group of inborn errors of metabolism that result in impairment of peroxisome function. In most cases, this results in neurologic dysfunction of varying extent. The major peroxisomal disorders will be reviewed here. The pathophysiology, clinical manifestations, and management of adrenoleukodystrophy are discussed separately. (See "Adrenoleukodystrophy".)


Peroxisomal disorders are divided into two major categories [2,5-8]:

Disorders of peroxisome biogenesis – This group includes:

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Aug 17, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Thomas JA, Greene CL, Cohn RM. Lysosomal storage and peroxisomal disorders presenting in the newborn. In: Avery's Diseases of the Newborn, 7th ed, Taeusch HW, Ballard RA (Eds), WB Saunders, Philadelphia 1998. p.275.
  2. Percy AK, Rutledge SL. Adrenoleukodystrophy and related disorders. Ment Retard Dev Disabil Res Rev 2001; 7:179.
  3. Wanders RJ, Waterham HR. Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 2006; 75:295.
  4. Roth KS. Peroxisomal disease--common ground for pediatrician, cell biologist, biochemist, pathologist, and neurologist. Clin Pediatr (Phila) 1999; 38:73.
  5. Powers JM, Tummons RC, Caviness VS Jr, et al. Structural and chemical alterations in the cerebral maldevelopment of fetal cerebro-hepato-renal (Zellweger) syndrome. J Neuropathol Exp Neurol 1989; 48:270.
  6. Wanders RJ, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 2006; 1763:1707.
  7. Steinberg SJ, Dodt G, Raymond GV, et al. Peroxisome biogenesis disorders. Biochim Biophys Acta 2006; 1763:1733.
  8. Shimozawa N. Molecular and clinical aspects of peroxisomal diseases. J Inherit Metab Dis 2007; 30:193.
  9. Furuki S, Tamura S, Matsumoto N, et al. Mutations in the peroxin Pex26p responsible for peroxisome biogenesis disorders of complementation group 8 impair its stability, peroxisomal localization, and interaction with the Pex1p x Pex6p complex. J Biol Chem 2006; 281:1317.
  10. Baumgartner MR, Poll-The BT, Verhoeven NM, et al. Clinical approach to inherited peroxisomal disorders: a series of 27 patients. Ann Neurol 1998; 44:720.
  11. Gilles L, Adams R, Kolony E. The neurology of neonatal hereditary metabolic diseases. In: Neurology of Hereditary Metabolic Diseases of Children, 2nd ed, McGraw Hill, New York 1996.
  12. Moser AB, Kreiter N, Bezman L, et al. Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann Neurol 1999; 45:100.
  13. Powers JM, Moser HW. Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 1998; 8:101.
  14. Knazek RA, Rizzo WB, Schulman JD, Dave JR. Membrane microviscosity is increased in the erythrocytes of patients with adrenoleukodystrophy and adrenomyeloneuropathy. J Clin Invest 1983; 72:245.
  15. Ho JK, Moser H, Kishimoto Y, Hamilton JA. Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J Clin Invest 1995; 96:1455.
  16. Gressens P, Baes M, Leroux P, et al. Neuronal migration disorder in Zellweger mice is secondary to glutamate receptor dysfunction. Ann Neurol 2000; 48:336.
  17. Powers JM. Normal and defective neuronal membranes: structure and function: neuronal lesions in peroxisomal disorders. J Mol Neurosci 2001; 16:285.
  18. Volpe JJ, Adams RD. Cerebro-hepato-renal syndrome of Zellweger: an inherited disorder of neuronal migration. Acta Neuropathol 1972; 20:175.
  19. Kelley RI, Datta NS, Dobyns WB, et al. Neonatal adrenoleukodystrophy: new cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am J Med Genet 1986; 23:869.
  20. Powers JM. The pathology of peroxisomal disorders with pathogenetic considerations. J Neuropathol Exp Neurol 1995; 54:710.
  21. Kaufmann WE, Theda C, Naidu S, et al. Neuronal migration abnormality in peroxisomal bifunctional enzyme defect. Ann Neurol 1996; 39:268.
  22. Dimmick JE, Applegarth DA. Pathology of peroxisomal disorders. Perspect Pediatr Pathol 1993; 17:45.
  23. Powers J. Peroxisomal diseases. In: Pediatric Neuropathology, Williams and Wilkins, Baltimore, MD 1995.
  24. YAKOVAC WC. Calcareous chondropathies in the newborn infant. AMA Arch Pathol 1954; 57:62.
  25. Jaffe R, Crumrine P, Hashida Y, Moser HW. Neonatal adrenoleukodystrophy: clinical, pathologic, and biochemical delineation of a syndrome affecting both males and females. Am J Pathol 1982; 108:100.
  26. Griffin DE, Moser HW, Mendoza Q, et al. Identification of the inflammatory cells in the central nervous system of patients with adrenoleukodystrophy. Ann Neurol 1985; 18:660.
  27. Powers JM, Liu Y, Moser AB, Moser HW. The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J Neuropathol Exp Neurol 1992; 51:630.
  28. Powers JM. Adreno-leukodystrophy (adreno-testiculo-leukomyelo-neuropathic-complex). Clin Neuropathol 1985; 4:181.
  29. Kassmann CM, Lappe-Siefke C, Baes M, et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 2007; 39:969.
  30. Powers JM, DeCiero DP, Ito M, et al. Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol Exp Neurol 2000; 59:89.
  31. Powers JM, DeCiero DP, Cox C, et al. The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J Neuropathol Exp Neurol 2001; 60:493.
  32. Powers JM, Pei Z, Heinzer AK, et al. Adreno-leukodystrophy: oxidative stress of mice and men. J Neuropathol Exp Neurol 2005; 64:1067.
  33. Theil AC, Schutgens RB, Wanders RJ, Heymans HS. Clinical recognition of patients affected by a peroxisomal disorder: a retrospective study in 40 patients. Eur J Pediatr 1992; 151:117.
  34. Wanders RJ, Schutgens RB, Barth PG. Peroxisomal disorders: a review. J Neuropathol Exp Neurol 1995; 54:726.
  35. van der Knaap MS, Wassmer E, Wolf NI, et al. MRI as diagnostic tool in early-onset peroxisomal disorders. Neurology 2012; 78:1304.
  36. Boehm CD, Cutting GR, Lachtermacher MB, et al. Accurate DNA-based diagnostic and carrier testing for X-linked adrenoleukodystrophy. Mol Genet Metab 1999; 66:128.
  37. Braverman N, Chen L, Lin P, et al. Mutation analysis of PEX7 in 60 probands with rhizomelic chondrodysplasia punctata and functional correlations of genotype with phenotype. Hum Mutat 2002; 20:284.
  38. Steinberg S, Chen L, Wei L, et al. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab 2004; 83:252.
  39. Ferdinandusse S, Ylianttila MS, Gloerich J, et al. Mutational spectrum of D-bifunctional protein deficiency and structure-based genotype-phenotype analysis. Am J Hum Genet 2006; 78:112.
  40. Lledó B, Bernabeu R, Ten J, et al. Preimplantation genetic diagnosis of X-linked adrenoleukodystrophy with gender determination using multiple displacement amplification. Fertil Steril 2007; 88:1327.
  41. Johnson JM, Babul-Hirji R, Chitayat D. First-trimester increased nuchal translucency and fetal hypokinesia associated with Zellweger syndrome. Ultrasound Obstet Gynecol 2001; 17:344.
  42. Hertzberg BS, Kliewer MA, Decker M, et al. Antenatal ultrasonographic diagnosis of rhizomelic chondrodysplasia punctata. J Ultrasound Med 1999; 18:715.
  43. Ebberink MS, Mooijer PA, Gootjes J, et al. Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder. Hum Mutat 2011; 32:59.
  44. Geisbrecht BV, Collins CS, Reuber BE, Gould SJ. Disruption of a PEX1-PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc Natl Acad Sci U S A 1998; 95:8630.
  45. Turner CL, Bunyan DJ, Thomas NS, et al. Zellweger syndrome resulting from maternal isodisomy of chromosome 1. Am J Med Genet A 2007; 143A:2172.
  46. Volpe JJ. Degenerative diseases of the newborn. In: Neurology of the Newborn, 4th ed, WB Saunders, Philadelphia 2001. p.599.
  47. Barkovich AJ, Peck WW. MR of Zellweger syndrome. AJNR Am J Neuroradiol 1997; 18:1163.
  48. Martinez M. Restoring the DHA levels in the brains of Zellweger patients. J Mol Neurosci 2001; 16:309.
  49. Paker AM, Sunness JS, Brereton NH, et al. Docosahexaenoic acid therapy in peroxisomal diseases: results of a double-blind, randomized trial. Neurology 2010; 75:826.
  50. Wei H, Kemp S, McGuinness MC, et al. Pharmacological induction of peroxisomes in peroxisome biogenesis disorders. Ann Neurol 2000; 47:286.
  51. Chang YC, Huang CC, Huang SC, Hung FC. Neonatal adrenoleukodystrophy presenting with seizure at birth: a case report and review of the literature. Pediatr Neurol 2008; 38:137.
  52. Matsui S, Funahashi M, Honda A, Shimozawa N. Newly identified milder phenotype of peroxisome biogenesis disorder caused by mutated PEX3 gene. Brain Dev 2013; 35:842.
  53. Mandel H, Meiron D, Schutgens RB, et al. Infantile refsum disease: gastrointestinal presentation of a peroxisomal disorder. J Pediatr Gastroenterol Nutr 1992; 14:83.
  54. Poll-The BT, Gootjes J, Duran M, et al. Peroxisome biogenesis disorders with prolonged survival: phenotypic expression in a cohort of 31 patients. Am J Med Genet A 2004; 126A:333.
  55. Motley AM, Hettema EH, Hogenhout EM, et al. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat Genet 1997; 15:377.
  56. Braverman N, Steel G, Obie C, et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat Genet 1997; 15:369.
  57. Purdue PE, Zhang JW, Skoneczny M, Lazarow PB. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 1997; 15:381.
  58. Ofman R, Hettema EH, Hogenhout EM, et al. Acyl-CoA:dihydroxyacetonephosphate acyltransferase: cloning of the human cDNA and resolution of the molecular basis in rhizomelic chondrodysplasia punctata type 2. Hum Mol Genet 1998; 7:847.
  59. Motley AM, Brites P, Gerez L, et al. Mutational spectrum in the PEX7 gene and functional analysis of mutant alleles in 78 patients with rhizomelic chondrodysplasia punctata type 1. Am J Hum Genet 2002; 70:612.
  60. van den Brink DM, Brites P, Haasjes J, et al. Identification of PEX7 as the second gene involved in Refsum disease. Am J Hum Genet 2003; 72:471.
  61. Viola A, Confort-Gouny S, Ranjeva JP, et al. MR imaging and MR spectroscopy in rhizomelic chondrodysplasia punctata. AJNR Am J Neuroradiol 2002; 23:480.
  62. Goh S. Neuroimaging features in a neonate with rhizomelic chondrodysplasia punctata. Pediatr Neurol 2007; 37:382.
  63. Bams-Mengerink AM, Majoie CB, Duran M, et al. MRI of the brain and cervical spinal cord in rhizomelic chondrodysplasia punctata. Neurology 2006; 66:798.
  64. Moser HW, Loes DJ, Melhem ER, et al. X-Linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics 2000; 31:227.
  65. Moser HW, Moser AB, Steinberg SJ. X-linked adrenoleukodystrophy. GeneReviews. Available at: genetests.org (Accessed on October 12, 2007).
  66. Jansen GA, Ofman R, Ferdinandusse S, et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet 1997; 17:190.
  67. Mihalik SJ, Morrell JC, Kim D, et al. Identification of PAHX, a Refsum disease gene. Nat Genet 1997; 17:185.
  68. Jansen GA, Hogenhout EM, Ferdinandusse S, et al. Human phytanoyl-CoA hydroxylase: resolution of the gene structure and the molecular basis of Refsum's disease. Hum Mol Genet 2000; 9:1195.
  69. Wierzbicki AS, Lloyd MD, Schofield CJ, et al. Refsum's disease: a peroxisomal disorder affecting phytanic acid alpha-oxidation. J Neurochem 2002; 80:727.
  70. Wierzbicki AS, Mitchell J, Lambert-Hammill M, et al. Identification of genetic heterogeneity in Refsum's disease. Eur J Hum Genet 2000; 8:649.
  71. CAMMERMEYER J. Neuropathological changes in hereditary neuropathies: manifestation of the syndrome heredopathia atactica polyneuritiformis in the presence of interstitial hypertrophic polyneuropathy. J Neuropathol Exp Neurol 1956; 15:340.
  72. Jansen GA, Waterham HR, Wanders RJ. Molecular basis of Refsum disease: sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum Mutat 2004; 23:209.
  73. Verhoeven NM, Kulik W, van den Heuvel CM, Jakobs C. Pre- and postnatal diagnosis of peroxisomal disorders using stable-isotope dilution gas chromatography--mass spectrometry. J Inherit Metab Dis 1995; 18 Suppl 1:45.
  74. Baldwin EJ, Gibberd FB, Harley C, et al. The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry 2010; 81:954.
  75. Brown PJ, Mei G, Gibberd FB, et al. Diet and Refsum's disease: The determination of phytanic acid and phytol in certain foods and the application of this knowledge to the choice of suitable convenience foods for patients with Refsum's disease. J Hum Nutr Diet 1993; 6:295.
  76. Hungerbühler JP, Meier C, Rousselle L, et al. Refsum's disease: management by diet and plasmapheresis. Eur Neurol 1985; 24:153.
  77. Harari D, Gibberd FB, Dick JP, Sidey MC. Plasma exchange in the treatment of Refsum's disease (heredopathia atactica polyneuritiformis). J Neurol Neurosurg Psychiatry 1991; 54:614.
  78. Fournier B, Saudubray JM, Benichou B, et al. Large deletion of the peroxisomal acyl-CoA oxidase gene in pseudoneonatal adrenoleukodystrophy. J Clin Invest 1994; 94:526.
  79. Ferdinandusse S, Denis S, Hogenhout EM, et al. Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency. Hum Mutat 2007; 28:904.
  80. van Grunsven EG, van Berkel E, Mooijer PA, et al. Peroxisomal bifunctional protein deficiency revisited: resolution of its true enzymatic and molecular basis. Am J Hum Genet 1999; 64:99.
  81. Ferdinandusse S, Denis S, Mooyer PA, et al. Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann Neurol 2006; 59:92.
  82. Elias ER, Mobassaleh M, Hajra AK, Moser AB. Developmental delay and growth failure caused by a peroxisomal disorder, dihydroxyacetonephosphate acyltransferase (DHAP-AT) deficiency. Am J Med Genet 1998; 80:223.
  83. Wanders RJ, Dekker C, Hovarth VA, et al. Human alkyldihydroxyacetonephosphate synthase deficiency: a new peroxisomal disorder. J Inherit Metab Dis 1994; 17:315.
  84. de Vet EC, Ijlst L, Oostheim W, et al. Alkyl-dihydroxyacetonephosphate synthase. Fate in peroxisome biogenesis disorders and identification of the point mutation underlying a single enzyme deficiency. J Biol Chem 1998; 273:10296.
  85. Goldfischer S, Collins J, Rapin I, et al. Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. J Pediatr 1986; 108:25.
  86. Ferdinandusse S, van Grunsven EG, Oostheim W, et al. Reinvestigation of peroxisomal 3-ketoacyl-CoA thiolase deficiency: identification of the true defect at the level of d-bifunctional protein. Am J Hum Genet 2002; 70:1589.
  87. Aubourg P, Kremser K, Roland MO, et al. Pseudo infantile Refsum's disease: catalase-deficient peroxisomal particles with partial deficiency of plasmalogen synthesis and oxidation of fatty acids. Pediatr Res 1993; 34:270.