Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Pediatric basic life support for health care providers

Susan B Torrey, MD
Section Editor
Gary R Fleisher, MD
Deputy Editor
James F Wiley, II, MD, MPH


Early recognition and treatment of sudden cardiac arrest improve survival for children and adults [1-3]. Basic life support (BLS) involves a systematic approach to initial patient assessment, activation of emergency medical services, and the initiation of cardiopulmonary resuscitation (CPR), including defibrillation. Key components of effective CPR include adequate ventilation and chest compressions.

BLS can be performed by trained laypersons, as well as by health care providers. This topic will review BLS principles for health care providers. Basic airway management for children, neonatal resuscitation, and BLS for adults is discussed separately. (See "Basic airway management in children" and "Neonatal resuscitation in the delivery room" and "Basic life support (BLS) in adults".)


Cardiopulmonary arrest among infants and children is typically caused by progressive tissue hypoxia and acidosis as the result of respiratory failure and/or shock [4]. Causes of respiratory failure and shock leading to cardiopulmonary arrest in these age groups include trauma, sudden infant death syndrome, respiratory distress, and sepsis [1,5-8]. This is in contrast to adults, for whom the most common cause of cardiac arrest is ischemic cardiovascular disease. (See "Basic life support (BLS) in adults", section on 'Epidemiology and survival'.)

Survival following pediatric cardiac arrest varies according to the site of arrest:

Out-of-hospital arrest – Out-of-hospital pediatric arrests often occur at or near home and are frequently unwitnessed [8,9]. Based upon observational studies, survival to discharge is approximately 3 to 9 percent for infants younger than one year of age [6,7,10], and 9 to 19 percent for children 1 to 18 years of age [8,10,11] with the higher rates of survival found in patients of all ages who received bystander cardiopulmonary resuscitation (CPR) [10].

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Jul 24, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. López-Herce J, García C, Domínguez P, et al. Outcome of out-of-hospital cardiorespiratory arrest in children. Pediatr Emerg Care 2005; 21:807.
  2. Samson RA, Nadkarni VM, Meaney PA, et al. Outcomes of in-hospital ventricular fibrillation in children. N Engl J Med 2006; 354:2328.
  3. Vaillancourt C, Stiell IG, Canadian Cardiovascular Outcomes Research Team. Cardiac arrest care and emergency medical services in Canada. Can J Cardiol 2004; 20:1081.
  4. Young KD, Seidel JS. Pediatric cardiopulmonary resuscitation: a collective review. Ann Emerg Med 1999; 33:195.
  5. Schindler MB, Bohn D, Cox PN, et al. Outcome of out-of-hospital cardiac or respiratory arrest in children. N Engl J Med 1996; 335:1473.
  6. Young KD, Gausche-Hill M, McClung CD, Lewis RJ. A prospective, population-based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary arrest. Pediatrics 2004; 114:157.
  7. Herlitz J, Engdahl J, Svensson L, et al. Characteristics and outcome among children suffering from out of hospital cardiac arrest in Sweden. Resuscitation 2005; 64:37.
  8. Atkins DL, Everson-Stewart S, Sears GK, et al. Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest. Circulation 2009; 119:1484.
  9. Gerein RB, Osmond MH, Stiell IG, et al. What are the etiology and epidemiology of out-of-hospital pediatric cardiopulmonary arrest in Ontario, Canada? Acad Emerg Med 2006; 13:653.
  10. Naim MY, Burke RV, McNally BF, et al. Association of Bystander Cardiopulmonary Resuscitation With Overall and Neurologically Favorable Survival After Pediatric Out-of-Hospital Cardiac Arrest in the United States: A Report From the Cardiac Arrest Registry to Enhance Survival Surveillance Registry. JAMA Pediatr 2017; 171:133.
  11. Sutton RM, Case E, Brown SP, et al. A quantitative analysis of out-of-hospital pediatric and adolescent resuscitation quality--A report from the ROC epistry-cardiac arrest. Resuscitation 2015; 93:150.
  12. Meyer L, Stubbs B, Fahrenbruch C, et al. Incidence, causes, and survival trends from cardiovascular-related sudden cardiac arrest in children and young adults 0 to 35 years of age: a 30-year review. Circulation 2012; 126:1363.
  13. Mitani Y, Ohta K, Yodoya N, et al. Public access defibrillation improved the outcome after out-of-hospital cardiac arrest in school-age children: a nationwide, population-based, Utstein registry study in Japan. Europace 2013; 15:1259.
  14. Fukuda T, Ohashi-Fukuda N, Kobayashi H, et al. Public access defibrillation and outcomes after pediatric out-of-hospital cardiac arrest. Resuscitation 2017; 111:1.
  15. Goto Y, Funada A, Goto Y. Duration of Prehospital Cardiopulmonary Resuscitation and Favorable Neurological Outcomes for Pediatric Out-of-Hospital Cardiac Arrests: A Nationwide, Population-Based Cohort Study. Circulation 2016; 134:2046.
  16. Smith BT, Rea TD, Eisenberg MS. Ventricular fibrillation in pediatric cardiac arrest. Acad Emerg Med 2006; 13:525.
  17. Knudson JD, Neish SR, Cabrera AG, et al. Prevalence and outcomes of pediatric in-hospital cardiopulmonary resuscitation in the United States: an analysis of the Kids' Inpatient Database*. Crit Care Med 2012; 40:2940.
  18. Girotra S, Spertus JA, Li Y, et al. Survival trends in pediatric in-hospital cardiac arrests: an analysis from Get With the Guidelines-Resuscitation. Circ Cardiovasc Qual Outcomes 2013; 6:42.
  19. Gupta P, Tang X, Gall CM, et al. Epidemiology and outcomes of in-hospital cardiac arrest in critically ill children across hospitals of varied center volume: a multi-center analysis. Resuscitation 2014; 85:1473.
  20. Martinez PA, Totapally BR. The epidemiology and outcomes of pediatric in-hospital cardiopulmonary arrest in the United States during 1997 to 2012. Resuscitation 2016; 105:177.
  21. Andersen LW, Raymond TT, Berg RA, et al. Association Between Tracheal Intubation During Pediatric In-Hospital Cardiac Arrest and Survival. JAMA 2016; 316:1786.
  22. deCaen AR, Garcia Guerra G, Maconochie I. Intubation During Pediatric CPR: Early, Late, or Not at All? JAMA 2016; 316:1772.
  23. Berg MD, Schexnayder SM, Chameides L, et al. Part 13: pediatric basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122:S862.
  24. American Heart Association. Web-based Integrated Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care - Part 11: Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality. ECCguidelines.heart.org (Accessed on October 15, 2015).
  25. Atkins DL, Berger S, Duff JP, et al. Part 11: Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015; 132:S519.
  26. Maconochie IK, Bingham R. Paediatric resuscitation. BMJ 2014; 348:g1732.
  27. Kleinman ME, de Caen AR, Chameides L, et al. Part 10: Pediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2010; 122:S466.
  28. Part 2: Adult Basic Life Support. Circulation 2005; II2:III5.
  29. Berg RA, Sanders AB, Kern KB, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 2001; 104:2465.
  30. Kern KB, Hilwig RW, Berg RA, et al. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation 2002; 105:645.
  31. Finholt DA, Kettrick RG, Wagner HR, Swedlow DB. The heart is under the lower third of the sternum. Implications for external cardiac massage. Am J Dis Child 1986; 140:646.
  32. Zimmerman E, Cohen N, Maniaci V, et al. Use of a metronome in cardiopulmonary resuscitation: a simulation study. Pediatrics 2015; 136.
  33. Berg MD, Schexnayder SM, Chameides L, et al. Pediatric basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2010; 126:e1345.
  34. Ludwig, SL, Lavelle, JM. Resuscitation-Pediatric basic and advanced life support. In: Textbook of Pediatric Emergency Medicine, 5th, Fleisher, GR, Ludwig, S, Henretig, FM (Eds), Lippincott Williams & Wilkins, Philadelphia 2006. p.3.
  35. Udassi JP, Udassi S, Theriaque DW, et al. Effect of alternative chest compression techniques in infant and child on rescuer performance. Pediatr Crit Care Med 2009; 10:328.
  36. Huynh TK, Hemway RJ, Perlman JM. The two-thumb technique using an elevated surface is preferable for teaching infant cardiopulmonary resuscitation. J Pediatr 2012; 161:658.
  37. Menegazzi JJ, Auble TE, Nicklas KA, et al. Two-thumb versus two-finger chest compression during CRP in a swine infant model of cardiac arrest. Ann Emerg Med 1993; 22:240.
  38. Dorfsman ML, Menegazzi JJ, Wadas RJ, Auble TE. Two-thumb vs. two-finger chest compression in an infant model of prolonged cardiopulmonary resuscitation. Acad Emerg Med 2000; 7:1077.
  39. Whitelaw CC, Slywka B, Goldsmith LJ. Comparison of a two-finger versus two-thumb method for chest compressions by healthcare providers in an infant mechanical model. Resuscitation 2000; 43:213.
  40. Stevenson AG, McGowan J, Evans AL, Graham CA. CPR for children: one hand or two? Resuscitation 2005; 64:205.
  41. Peska E, Kelly AM, Kerr D, Green D. One-handed versus two-handed chest compressions in paediatric cardio-pulmonary resuscitation. Resuscitation 2006; 71:65.
  42. Kleinman ME, de Caen AR, Chameides L, et al. Pediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Pediatrics 2010; 126:e1261.
  43. Abella BS, Alvarado JP, Myklebust H, et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005; 293:305.
  44. Wik L, Kramer-Johansen J, Myklebust H, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005; 293:299.
  45. Berg RA, Sanders AB, Milander M, et al. Efficacy of audio-prompted rate guidance in improving resuscitator performance of cardiopulmonary resuscitation on children. Acad Emerg Med 1994; 1:35.
  46. Fukuda T, Ohashi-Fukuda N, Kobayashi H, et al. Conventional Versus Compression-Only Versus No-Bystander Cardiopulmonary Resuscitation for Pediatric Out-of-Hospital Cardiac Arrest. Circulation 2016; 134:2060.
  47. Kitamura T, Iwami T, Kawamura T, et al. Conventional and chest-compression-only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study. Lancet 2010; 375:1347.
  48. Ogawa T, Akahane M, Koike S, et al. Outcomes of chest compression only CPR versus conventional CPR conducted by lay people in patients with out of hospital cardiopulmonary arrest witnessed by bystanders: nationwide population based observational study. BMJ 2011; 342:c7106.
  49. Kleinman ME, Chameides L, Schexnayder SM, et al. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122:S876.
  50. Mogayzel C, Quan L, Graves JR, et al. Out-of-hospital ventricular fibrillation in children and adolescents: causes and outcomes. Ann Emerg Med 1995; 25:484.
  51. Cecchin F, Jorgenson DB, Berul CI, et al. Is arrhythmia detection by automatic external defibrillator accurate for children?: sensitivity and specificity of an automatic external defibrillator algorithm in 696 pediatric arrhythmias. Circulation 2001; 103:2483.
  52. Atkinson E, Mikysa B, Conway JA, et al. Specificity and sensitivity of automated external defibrillator rhythm analysis in infants and children. Ann Emerg Med 2003; 42:185.
  53. Atkins DL, Jorgenson DB. Attenuated pediatric electrode pads for automated external defibrillator use in children. Resuscitation 2005; 66:31.
  54. Jones P, Lodé N. Ventricular fibrillation and defibrillation. Arch Dis Child 2007; 92:916.
  55. Divekar A, Soni R. Successful parental use of an automated external defibrillator for an infant with long-QT syndrome. Pediatrics 2006; 118:e526.
  56. Bar-Cohen Y, Walsh EP, Love BA, Cecchin F. First appropriate use of automated external defibrillator in an infant. Resuscitation 2005; 67:135.
  57. Markenson D, Pyles L, Neish S, et al. Ventricular fibrillation and the use of automated external defibrillators on children. Pediatrics 2007; 120:e1368.