Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Pathophysiology and etiology of the syndrome of inappropriate antidiuretic hormone secretion (SIADH)

Richard H Sterns, MD
Section Editor
Michael Emmett, MD
Deputy Editor
John P Forman, MD, MSc


The syndrome of inappropriate secretion of antidiuretic hormone (SIADH) is a disorder of impaired water excretion caused by the inability to suppress the secretion of antidiuretic hormone (ADH) [1]. If water intake exceeds the reduced urine output, the ensuing water retention leads to the development of hyponatremia.

The SIADH should be suspected in any patient with hyponatremia, hypoosmolality, and a urine osmolality above 100 mosmol/kg. In SIADH, the urine sodium concentration is usually above 40 mEq/L, the serum potassium concentration is normal, there is no acid-base disturbance, and the serum uric acid concentration is frequently low [1]. (See "Diagnostic evaluation of adults with hyponatremia".)

The pathophysiology and etiology of SIADH will be reviewed here. The treatment of this disorder is discussed separately. (See "Treatment of hyponatremia: Syndrome of inappropriate antidiuretic hormone secretion (SIADH) and reset osmostat".)


Pathogenesis of hyponatremia — The plasma sodium concentration (PNa) is a function of the ratio of the body's content of exchangeable sodium and potassium (NaE and KE) and total body water (TBW) as described by Edelman's classic equation:

 PNa  ≈  (NaE + KE)/Total body water

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Dec 06, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Rose BD, Post TW. Clinical Physiology of Acid-Base and Electrolyte Disorders, 5th ed, McGraw-Hill, New York 2001. p.703.
  2. Steele A, Gowrishankar M, Abrahamson S, et al. Postoperative hyponatremia despite near-isotonic saline infusion: a phenomenon of desalination. Ann Intern Med 1997; 126:20.
  3. Robertson GL. Regulation of arginine vasopressin in the syndrome of inappropriate antidiuresis. Am J Med 2006; 119:S36.
  4. Robertson GL, Shelton RL, Athar S. The osmoregulation of vasopressin. Kidney Int 1976; 10:25.
  5. Fenske WK, Christ-Crain M, Hörning A, et al. A copeptin-based classification of the osmoregulatory defects in the syndrome of inappropriate antidiuresis. J Am Soc Nephrol 2014; 25:2376.
  6. Verbalis JG, Drutarosky MD. Adaptation to chronic hypoosmolality in rats. Kidney Int 1988; 34:351.
  7. Gross PA, Anderson RJ. Effects of DDAVP and AVP on sodium and water balance in conscious rat. Am J Physiol 1982; 243:R512.
  8. LEAF A, BARTTER FC, SANTOS RF, WRONG O. Evidence in man that urinary electrolyte loss induced by pitressin is a function of water retention. J Clin Invest 1953; 32:868.
  9. JAENIKE JR, WATERHOUSE C. The renal response to sustained administration of vasopressin and water in man. J Clin Endocrinol Metab 1961; 21:231.
  10. Ecelbarger CA, Nielsen S, Olson BR, et al. Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat. J Clin Invest 1997; 99:1852.
  11. Murase T, Ecelbarger CA, Baker EA, et al. Kidney aquaporin-2 expression during escape from antidiuresis is not related to plasma or tissue osmolality. J Am Soc Nephrol 1999; 10:2067.
  12. Saito T, Higashiyama M, Nagasaka S, et al. Role of aquaporin-2 gene expression in hyponatremic rats with chronic vasopressin-induced antidiuresis. Kidney Int 2001; 60:1266.
  13. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med 2007; 356:2064.
  14. Johnson BE, Chute JP, Rushin J, et al. A prospective study of patients with lung cancer and hyponatremia of malignancy. Am J Respir Crit Care Med 1997; 156:1669.
  15. Ferlito A, Rinaldo A, Devaney KO. Syndrome of inappropriate antidiuretic hormone secretion associated with head neck cancers: review of the literature. Ann Otol Rhinol Laryngol 1997; 106:878.
  16. Talmi YP, Wolf GT, Hoffman HT, Krause CJ. Elevated arginine vasopressin levels in squamous cell cancer of the head and neck. Laryngoscope 1996; 106:317.
  17. Sørensen JB, Andersen MK, Hansen HH. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in malignant disease. J Intern Med 1995; 238:97.
  18. Kim JK, Summer SN, Wood WM, Schrier RW. Osmotic and non-osmotic regulation of arginine vasopressin (AVP) release, mRNA, and promoter activity in small cell lung carcinoma (SCLC) cells. Mol Cell Endocrinol 1996; 123:179.
  19. Weissman PN, Shenkman L, Gregerman RI. Chlorpropamide hyponatremia: drug-induced inappropriate antidiuretic-hormone activity. N Engl J Med 1971; 284:65.
  20. Hensen J, Haenelt M, Gross P. Water retention after oral chlorpropamide is associated with an increase in renal papillary arginine vasopressin receptors. Eur J Endocrinol 1995; 132:459.
  21. Gold PW, Robertson GL, Ballenger JC, et al. Carbamazepine diminishes the sensitivity of the plasma arginine vasopressin response to osmotic stimulation. J Clin Endocrinol Metab 1983; 57:952.
  22. Kamiyama T, Iseki K, Kawazoe N, et al. Carbamazepine-induced hyponatremia in a patient with partial central diabetes insipidus. Nephron 1993; 64:142.
  23. Van Amelsvoort T, Bakshi R, Devaux CB, Schwabe S. Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia 1994; 35:181.
  24. Nielsen OA, Johannessen AC, Bardrum B. Oxcarbazepine-induced hyponatremia, a cross-sectional study. Epilepsy Res 1988; 2:269.
  25. Sachdeo RC, Wasserstein A, Mesenbrink PJ, D'Souza J. Effects of oxcarbazepine on sodium concentration and water handling. Ann Neurol 2002; 51:613.
  26. Bressler RB, Huston DP. Water intoxication following moderate-dose intravenous cyclophosphamide. Arch Intern Med 1985; 145:548.
  27. Salido M, Macarron P, Hernández-García C, et al. Water intoxication induced by low-dose cyclophosphamide in two patients with systemic lupus erythematosus. Lupus 2003; 12:636.
  28. Nausea and vasopressin. Lancet 1991; 337:1133.
  29. ten Holt WL, van Iperen CE, Schrijver G, Bartelink AK. Severe hyponatremia during therapy with fluoxetine. Arch Intern Med 1996; 156:681.
  30. Liu BA, Mittmann N, Knowles SR, Shear NH. Hyponatremia and the syndrome of inappropriate secretion of antidiuretic hormone associated with the use of selective serotonin reuptake inhibitors: a review of spontaneous reports. CMAJ 1996; 155:519.
  31. Covyeou JA, Jackson CW. Hyponatremia associated with escitalopram. N Engl J Med 2007; 356:94.
  32. Ozturk S, Ozsenel EB, Kazancioglu R, Turkmen A. A case of fluoxetine-induced syndrome of inappropriate antidiuretic hormone secretion. Nat Clin Pract Nephrol 2008; 4:278.
  33. Fabian TJ, Amico JA, Kroboth PD, et al. Paroxetine-induced hyponatremia in older adults: a 12-week prospective study. Arch Intern Med 2004; 164:327.
  34. Holden R, Jackson MA. Near-fatal hyponatraemic coma due to vasopressin over-secretion after "ecstasy" (3,4-MDMA). Lancet 1996; 347:1052.
  35. Wilkins B. Cerebral oedema after MDMA ("ecstasy") and unrestricted water intake. Hyponatraemia must be treated with low water input. BMJ 1996; 313:689.
  36. Adler D, Voide C, Thorens JB, Desmeules J. SIADH consecutive to ciprofloxacin intake. Eur J Intern Med 2004; 15:463.
  37. Liapis K, Apostolidis J, Charitaki E, et al. Syndrome of inappropriate secretion of antidiuretic hormone associated with imatinib. Ann Pharmacother 2008; 42:1882.
  38. Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis 2008; 52:144.
  39. Fieldman NR, Forsling ML, Le Quesne LP. The effect of vasopressin on solute and water excretion during and after surgical operations. Ann Surg 1985; 201:383.
  40. Anderson RJ. Hospital-associated hyponatremia. Kidney Int 1986; 29:1237.
  41. Gowrishankar M, Lin SH, Mallie JP, et al. Acute hyponatremia in the perioperative period: insights into its pathophysiology and recommendations for management. Clin Nephrol 1998; 50:352.
  42. Aronson D, Dragu RE, Nakhoul F, et al. Hyponatremia as a complication of cardiac catheterization: a prospective study. Am J Kidney Dis 2002; 40:940.
  43. Sane T, Rantakari K, Poranen A, et al. Hyponatremia after transsphenoidal surgery for pituitary tumors. J Clin Endocrinol Metab 1994; 79:1395.
  44. Olson BR, Rubino D, Gumowski J, Oldfield EH. Isolated hyponatremia after transsphenoidal pituitary surgery. J Clin Endocrinol Metab 1995; 80:85.
  45. Dunn AL, Powers JR, Ribeiro MJ, et al. Adverse events during use of intranasal desmopressin acetate for haemophilia A and von Willebrand disease: a case report and review of 40 patients. Haemophilia 2000; 6:11.
  46. Shepherd LL, Hutchinson RJ, Worden EK, et al. Hyponatremia and seizures after intravenous administration of desmopressin acetate for surgical hemostasis. J Pediatr 1989; 114:470.
  47. Humphries JE, Siragy H. Significant hyponatremia following DDAVP administration in a healthy adult. Am J Hematol 1993; 44:12.
  48. Feeney JG. Water intoxication and oxytocin. Br Med J (Clin Res Ed) 1982; 285:243.
  49. Li C, Wang W, Summer SN, et al. Molecular mechanisms of antidiuretic effect of oxytocin. J Am Soc Nephrol 2008; 19:225.
  50. Vitting KE, Gardenswartz MH, Zabetakis PM, et al. Frequency of hyponatremia and nonosmolar vasopressin release in the acquired immunodeficiency syndrome. JAMA 1990; 263:973.
  51. Gitelman SE, Feldman BJ, Rosenthal SM. Nephrogenic syndrome of inappropriate antidiuresis: a novel disorder in water balance in pediatric patients. Am J Med 2006; 119:S54.
  52. Feldman BJ, Rosenthal SM, Vargas GA, et al. Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med 2005; 352:1884.
  53. Carpentier E, Greenbaum LA, Rochdi D, et al. Identification and characterization of an activating F229V substitution in the V2 vasopressin receptor in an infant with NSIAD. J Am Soc Nephrol 2012; 23:1635.
  54. Decaux G, Vandergheynst F, Bouko Y, et al. Nephrogenic syndrome of inappropriate antidiuresis in adults: high phenotypic variability in men and women from a large pedigree. J Am Soc Nephrol 2007; 18:606.
  55. Powlson AS, Challis BG, Halsall DJ, et al. Nephrogenic syndrome of inappropriate antidiuresis secondary to an activating mutation in the arginine vasopressin receptor AVPR2. Clin Endocrinol (Oxf) 2016; 85:306.
  56. Erdélyi LS, Mann WA, Morris-Rosendahl DJ, et al. Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis. Kidney Int 2015; 88:1070.
  57. Tian W, Fu Y, Garcia-Elias A, et al. A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia. Proc Natl Acad Sci U S A 2009; 106:14034.
  58. Goldstein CS, Braunstein S, Goldfarb S. Idiopathic syndrome of inappropriate antidiuretic hormone secretion possibly related to advanced age. Ann Intern Med 1983; 99:185.
  59. Sterns RH. The syndrome of inappropriate antidiuretic hormone secretion of unknown origin. Am J Kidney Dis 1999; 33:161.
  60. Miller M, Hecker MS, Friedlander DA, Carter JM. Apparent idiopathic hyponatremia in an ambulatory geriatric population. J Am Geriatr Soc 1996; 44:404.
  61. Anpalahan M. Chronic idiopathic hyponatremia in older people due to syndrome of inappropriate antidiuretic hormone secretion (SIADH) possibly related to aging. J Am Geriatr Soc 2001; 49:788.
  62. Inappropriate antidiuretic hormone secretion of unknown origin. Kidney Int 1980; 17:554.
  63. Gentric A, Baccino E, Mottier D, et al. Temporal arteritis revealed by a syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 1988; 85:559.