UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 26

of 'Pathogenesis of alcoholic liver disease'

26
TI
Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice.
AU
Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG
SO
Hepatology. 2001;34(1):101.
 
Chronic alcohol administration increases gut-derived endotoxin in the portal blood, which activates Kupffer cells and causes liver injury. Mice (C3H/HeJ) with mutations in toll-like receptor 4 (TLR4) are hyporesponsive to endotoxin. To test the hypothesis that TLR4 is involved in early alcohol-induced liver injury, the long-term intragastric ethanol feeding protocol developed by Tsukamoto and French for rats was adapted to mice. Animals with nonfunctional TLR4 and wild-type mice (C3H/HeOuJ) were compared. Two-month-old female mice were fed a high-fat liquid diet with either ethanol or isocaloric maltose-dextrin as control continuously for 4 weeks. There was no difference in mean urine alcohol concentrations between the groups. Dietary alcohol significantly increased liver-to-body weight ratios and serum alanine transaminase (ALT) levels in wild-type mice (109 +/- 18 U/L) over high-fat controls (40 +/- 3 U/L), effects that were blunted significantly in mice with a mutation of TLR4 (55 +/- 9 U/L). While no significant pathologic changes were observed in high-fat controls, dietary ethanol caused steatosis, mild inflammation, and focal necrosis in wild-type animals (pathology score = 5.2 +/- 1.2). These pathologic changes were significantly lower in TLR4-deficient mice fed ethanol (score = 2.0 +/- 1.3). Endotoxin levels in the portal vein were increasedsignificantly after 4 weeks in both groups fed ethanol. Moreover, ethanol increased tumor necrosis factor alpha (TNF-alpha) mRNA expression in wild-type, but not in TLR4-deficient, mice. These data are consistent with the hypothesis that Kupffer cell activation by endotoxin via TLR4 is involved in early alcohol-induced liver injury.
AD
Laboratory of Hepatobiology and Toxicology, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA. uesugi@med.unc.edu
PMID