Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Moraxella catarrhalis infections

Timothy F Murphy, MD
Section Editors
John G Bartlett, MD
Thomas M File, Jr, MD
Deputy Editor
Sheila Bond, MD


Moraxella catarrhalis is a gram-negative diplococcus that commonly colonizes the upper respiratory tract. It is a leading cause of acute otitis media in children, acute exacerbations of chronic obstructive pulmonary disease (COPD), and acute bacterial rhinosinusitis.

The epidemiology, pathogenesis, clinical manifestations, diagnosis, treatment, and prevention of infections caused by M. catarrhalis are discussed here.

Acute otitis media, COPD, and acute rhinosinusitis are discussed separately:

(See "Acute otitis media in children: Epidemiology, microbiology, clinical manifestations, and complications".)

(See "Acute otitis media in children: Diagnosis".)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Dec 08, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Ejlertsen T, Thisted E, Ebbesen F, et al. Branhamella catarrhalis in children and adults. A study of prevalence, time of colonisation, and association with upper and lower respiratory tract infections. J Infect 1994; 29:23.
  2. Faden H, Harabuchi Y, Hong JJ. Epidemiology of Moraxella catarrhalis in children during the first 2 years of life: relationship to otitis media. J Infect Dis 1994; 169:1312.
  3. Aniansson G, Alm B, Andersson B, et al. Nasopharyngeal colonization during the first year of life. J Infect Dis 1992; 165 Suppl 1:S38.
  4. Leach AJ, Boswell JB, Asche V, et al. Bacterial colonization of the nasopharynx predicts very early onset and persistence of otitis media in Australian aboriginal infants. Pediatr Infect Dis J 1994; 13:983.
  5. Navne JE, Børresen ML, Slotved HC, et al. Nasopharyngeal bacterial carriage in young children in Greenland: a population at high risk of respiratory infections. Epidemiol Infect 2016; 144:3226.
  6. Murphy TF, Brauer AL, Grant BJ, Sethi S. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am J Respir Crit Care Med 2005; 172:195.
  7. Ruohola A, Meurman O, Nikkari S, et al. Microbiology of acute otitis media in children with tympanostomy tubes: prevalences of bacteria and viruses. Clin Infect Dis 2006; 43:1417.
  8. Coker TR, Chan LS, Newberry SJ, et al. Diagnosis, microbial epidemiology, and antibiotic treatment of acute otitis media in children: a systematic review. JAMA 2010; 304:2161.
  9. Vaneechoutte M, Verschraegen G, Claeys G, et al. Respiratory tract carrier rates of Moraxella (Branhamella) catarrhalis in adults and children and interpretation of the isolation of M. catarrhalis from sputum. J Clin Microbiol 1990; 28:2674.
  10. Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2012; 7:1073.
  11. Kilpi T, Herva E, Kaijalainen T, et al. Bacteriology of acute otitis media in a cohort of Finnish children followed for the first two years of life. Pediatr Infect Dis J 2001; 20:654.
  12. Murphy TF, Parameswaran GI. Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 2009; 49:124.
  13. Wilkinson TMA, Aris E, Bourne S, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax 2017; 72:919.
  14. Rosenfeld RM. CLINICAL PRACTICE. Acute Sinusitis in Adults. N Engl J Med 2016; 375:962.
  15. Brook I, Gober AE. Frequency of recovery of pathogens from the nasopharynx of children with acute maxillary sinusitis before and after the introduction of vaccination with the 7-valent pneumococcal vaccine. Int J Pediatr Otorhinolaryngol 2007; 71:575.
  16. Cheepsattayakorn A, Tharavichitakul P, Dettrairat S, Sutachai V. Moraxella catarrhalis pneumonia in an AIDS patient: a case report. J Med Assoc Thai 2009; 92:284.
  17. Tolentino LF. Causes of Moraxella catarrhalis pathogenicity: review of literature and hospital epidemiology. Lab Med 2007; 38:420.
  18. Shahani L, Tavakoli Tabasi S. Moraxella catarrhalis bacteraemia and prosthetic valve endocarditis. BMJ Case Rep 2015; 2015.
  19. Sano N, Matsunaga S, Akiyama T, et al. Moraxella catarrhalis bacteraemia associated with prosthetic vascular graft infection. J Med Microbiol 2010; 59:245.
  20. Ioannidis JP, Worthington M, Griffiths JK, Snydman DR. Spectrum and significance of bacteremia due to Moraxella catarrhalis. Clin Infect Dis 1995; 21:390.
  21. Bosch AATM, van Houten MA, Bruin JP, et al. Nasopharyngeal carriage of Streptococcus pneumoniae and other bacteria in the 7th year after implementation of the pneumococcal conjugate vaccine in the Netherlands. Vaccine 2016; 34:531.
  22. Pichichero ME. Ten-Year Study of Acute Otitis Media in Rochester, NY. Pediatr Infect Dis J 2016; 35:1027.
  23. Vesikari T, Forsten A, Seppä I, et al. Effectiveness of the 10-Valent Pneumococcal Nontypeable Haemophilus influenzae Protein D-Conjugated Vaccine (PHiD-CV) Against Carriage and Acute Otitis Media-A Double-Blind Randomized Clinical Trial in Finland. J Pediatric Infect Dis Soc 2016; 5:237.
  24. Yildirim I, Little BA, Finkelstein J, et al. Surveillance of pneumococcal colonization and invasive pneumococcal disease reveals shift in prevalent carriage serotypes in Massachusetts' children to relatively low invasiveness. Vaccine 2017; 35:4002.
  25. Oikawa J, Ishiwada N, Takahashi Y, et al. Changes in nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis among healthy children attending a day-care centre before and after official financial support for the 7-valent pneumococcal conjugate vaccine and H. influenzae type b vaccine in Japan. J Infect Chemother 2014; 20:146.
  26. Dunne EM, Manning J, Russell FM, et al. Effect of pneumococcal vaccination on nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Fijian children. J Clin Microbiol 2012; 50:1034.
  27. Andrade DC, Borges IC, Bouzas ML, et al. 10-valent pneumococcal conjugate vaccine (PCV10) decreases metabolic activity but not nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae. Vaccine 2017; 35:4105.
  28. van Gils EJ, Veenhoven RH, Rodenburg GD, et al. Effect of 7-valent pneumococcal conjugate vaccine on nasopharyngeal carriage with Haemophilus influenzae and Moraxella catarrhalis in a randomized controlled trial. Vaccine 2011; 29:7595.
  29. Kaur R, Morris M, Pichichero ME. Epidemiology of Acute Otitis Media in the Postpneumococcal Conjugate Vaccine Era. Pediatrics 2017; 140.
  30. Block SL, Hedrick J, Harrison CJ, et al. Community-wide vaccination with the heptavalent pneumococcal conjugate significantly alters the microbiology of acute otitis media. Pediatr Infect Dis J 2004; 23:829.
  31. Casey JR, Pichichero ME. Changes in frequency and pathogens causing acute otitis media in 1995-2003. Pediatr Infect Dis J 2004; 23:824.
  32. Revai K, McCormick DP, Patel J, et al. Effect of pneumococcal conjugate vaccine on nasopharyngeal bacterial colonization during acute otitis media. Pediatrics 2006; 117:1823.
  33. Brook I, Gober AE. Recovery of interfering and beta-lactamase-producing bacteria from group A beta-haemolytic streptococci carriers and non-carriers. J Med Microbiol 2006; 55:1741.
  34. Casey JR, Kauer R, Pichichero ME. Otopathogens Causing Acute Otitis Media in the 13-Valent Pneumococcal Conjugate Vaccine Era. 18th International Symposium on Recent Advances in Otitis Media; National Harbor, MD. 2015.
  35. Sillanpää S, Oikarinen S, Sipilä M, et al. Moraxella catarrhalis Might Be More Common than Expected in Acute Otitis Media in Young Finnish Children. J Clin Microbiol 2016; 54:2373.
  36. Sillanpää S, Sipilä M, Hyöty H, et al. Antibiotic resistance in pathogens causing acute otitis media in Finnish children. Int J Pediatr Otorhinolaryngol 2016; 85:91.
  37. Eskola J, Kilpi T, Palmu A, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med 2001; 344:403.
  38. Qin L, Masaki H, Gotoh K, et al. Molecular epidemiological study of Moraxella catarrhalis isolated from nosocomial respiratory infection patients in a community hospital in Japan. Intern Med 2009; 48:797.
  39. Masaki H, Asoh N, Kawazoe K, et al. Possible relationship of PFGE patterns of Moraxella catarrhalis between hospital- and community-acquired respiratory infections in a community hospital. Microbiol Immunol 2003; 47:379.
  40. Ikram RB, Nixon M, Aitken J, Wells E. A prospective study of isolation of Moraxella catarrhalis in a hospital during the winter months. J Hosp Infect 1993; 25:7.
  41. Calder MA, Croughan MJ, McLeod DT, Ahmad F. The incidence and antibiotic susceptibility of Branhamella catarrhalis in respiratory infections. Drugs 1986; 31 Suppl 3:11.
  42. Yano H, Suetake M, Kuga A, et al. Pulsed-field gel electrophoresis analysis of nasopharyngeal flora in children attending a day care center. J Clin Microbiol 2000; 38:625.
  43. Masaki H, Qin L, Zhou Z, et al. A prospective study of intrafamilial transmission and antimicrobial susceptibility of Moraxella catarrhalis. Microbiol Immunol 2011; 55:599.
  44. Watanabe H, Hoshino K, Sugita R, et al. Molecular analysis of intrafamiliar transmission of Moraxella catarrhalis. Int J Med Microbiol 2005; 295:187.
  45. National Center for Biotechnology InformationTaxonomy Browser. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi (Accessed on November 07, 2017).
  46. Murphy TF. Moraxella catarrhalis, Kingella, and other gram-negative cocci. In: Mandell, Douglas, and Bennett's Principles and Practices of Infectious Diseases, 7th ed, Mandell GL, Bennett JE, Dolin R (Eds), Churchill Livingstone Elsevier, Philadelphia 2010. Vol 2, p.2771.
  47. Schaefer F, Bruttin O, Zografos L, Guex-Crosier Y. Bacterial keratitis: a prospective clinical and microbiological study. Br J Ophthalmol 2001; 85:842.
  48. Das S, Constantinou M, Daniell M, Taylor HR. Moraxella keratitis: predisposing factors and clinical review of 95 cases. Br J Ophthalmol 2006; 90:1236.
  49. Laukeland H, Bergh K, Bevanger L. Posttrabeculectomy endophthalmitis caused by Moraxella nonliquefaciens. J Clin Microbiol 2002; 40:2668.
  50. Tan TT, Riesbeck K. Current progress of adhesins as vaccine candidates for Moraxella catarrhalis. Expert Rev Vaccines 2007; 6:949.
  51. Singh B, Alvarado-Kristensson M, Johansson M, et al. The Respiratory Pathogen Moraxella catarrhalis Targets Collagen for Maximal Adherence to Host Tissues. MBio 2016; 7:e00066.
  52. Slevogt H, Seybold J, Tiwari KN, et al. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response. Cell Microbiol 2007; 9:694.
  53. Heiniger N, Spaniol V, Troller R, et al. A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. J Infect Dis 2007; 196:1080.
  54. Parameswaran GI, Wrona CT, Murphy TF, Sethi S. Moraxella catarrhalis acquisition, airway inflammation and protease-antiprotease balance in chronic obstructive pulmonary disease. BMC Infect Dis 2009; 9:178.
  55. Slevogt H, Schmeck B, Jonatat C, et al. Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-kappaB activation and histone deacetylase activity reduction. Am J Physiol Lung Cell Mol Physiol 2006; 290:L818.
  56. N'Guessan PD, Temmesfeld-Wollbrück B, Zahlten J, et al. Moraxella catarrhalis induces ERK- and NF-kappaB-dependent COX-2 and prostaglandin E2 in lung epithelium. Eur Respir J 2007; 30:443.
  57. Slevogt H, Maqami L, Vardarowa K, et al. Differential regulation of Moraxella catarrhalis-induced interleukin-8 response by protein kinase C isoforms. Eur Respir J 2008; 31:725.
  58. Nordström T, Blom AM, Tan TT, et al. Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity. J Immunol 2005; 175:3628.
  59. Attia AS, Ram S, Rice PA, Hansen EJ. Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade. Infect Immun 2006; 74:1597.
  60. Bootsma HJ, van der Heide HG, van de Pas S, et al. Analysis of Moraxella catarrhalis by DNA typing: evidence for a distinct subpopulation associated with virulence traits. J Infect Dis 2000; 181:1376.
  61. Wirth T, Morelli G, Kusecek B, et al. The rise and spread of a new pathogen: seroresistant Moraxella catarrhalis. Genome Res 2007; 17:1647.
  62. Hall-Stoodley L, Hu FZ, Gieseke A, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006; 296:202.
  63. Perez AC, Pang B, King LB, et al. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog Dis 2014; 70:280.
  64. Torretta S, Marchisio P, Drago L, et al. Nasopharyngeal biofilm-producing otopathogens in children with nonsevere recurrent acute otitis media. Otolaryngol Head Neck Surg 2012; 146:991.
  65. Pettigrew MM, Gent JF, Pyles RB, et al. Viral-bacterial interactions and risk of acute otitis media complicating upper respiratory tract infection. J Clin Microbiol 2011; 49:3750.
  66. Murphy TF. Moraxella catarrhalis, Kingella, and other gram-negative cocci. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 8th ed, Bennett JE, Dolin R, Blaser MJ (Eds), Elsevier Inc, Philadelphia, PA 2015. p.2463.
  67. Ruohola A, Pettigrew MM, Lindholm L, et al. Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media. J Infect 2013; 66:247.
  68. Verhaegh SJ, Snippe ML, Levy F, et al. Colonization of healthy children by Moraxella catarrhalis is characterized by genotype heterogeneity, virulence gene diversity and co-colonization with Haemophilus influenzae. Microbiology 2011; 157:169.
  69. Pettigrew MM, Gent JF, Revai K, et al. Microbial interactions during upper respiratory tract infections. Emerg Infect Dis 2008; 14:1584.
  70. Broides A, Dagan R, Greenberg D, et al. Acute otitis media caused by Moraxella catarrhalis: epidemiologic and clinical characteristics. Clin Infect Dis 2009; 49:1641.
  71. Tan TT, Morgelin M, Forsgren A, Riesbeck K. Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. J Infect Dis 2007; 195:1661.
  72. Armbruster CE, Hong W, Pang B, et al. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. MBio 2010; 1.
  73. Hol C, Van Dijke EE, Verduin CM, et al. Experimental evidence for Moraxella-induced penicillin neutralization in pneumococcal pneumonia. J Infect Dis 1994; 170:1613.
  74. Budhani RK, Struthers JK. Interaction of Streptococcus pneumoniae and Moraxella catarrhalis: investigation of the indirect pathogenic role of beta-lactamase-producing moraxellae by use of a continuous-culture biofilm system. Antimicrob Agents Chemother 1998; 42:2521.
  75. Brook I. Direct and indirect pathogenicity of Branhamella catarrhalis. Drugs 1986; 31 Suppl 3:97.
  76. Wardle JK. Branhamella catarrhalis as an indirect pathogen. Drugs 1986; 31 Suppl 3:93.
  77. Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002; 347:465.
  78. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 2008; 359:2355.
  79. Sethi S, Wrona C, Eschberger K, et al. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177:491.
  80. Sethi S, Muscarella K, Evans N, et al. Airway inflammation and etiology of acute exacerbations of chronic bronchitis. Chest 2000; 118:1557.
  81. LaFontaine ER, Snipes LE, Bullard B, et al. Identification of domains of the Hag/MID surface protein recognized by systemic and mucosal antibodies in adults with chronic obstructive pulmonary disease following clearance of Moraxella catarrhalis. Clin Vaccine Immunol 2009; 16:653.
  82. Murphy TF, Brauer AL, Aebi C, Sethi S. Identification of surface antigens of Moraxella catarrhalis as targets of human serum antibody responses in chronic obstructive pulmonary disease. Infect Immun 2005; 73:3471.
  83. Murphy TF, Brauer AL, Aebi C, Sethi S. Antigenic specificity of the mucosal antibody response to Moraxella catarrhalis in chronic obstructive pulmonary disease. Infect Immun 2005; 73:8161.
  84. Wright PW, Wallace RJ Jr. Pneumonia due to Moraxella (Branhamella) catarrhalis. Semin Respir Infect 1989; 4:40.
  85. Ariza-Prota MA, Pando-Sandoval A, García-Clemente M, et al. Community-Acquired Moraxella catarrhalis Bacteremic Pneumonia: Two Case Reports and Review of the Literature. Case Rep Pulmonol 2016; 2016:5134969.
  86. Ahmed A, Broides A, Givon-Lavi N, et al. Clinical and laboratory aspects of Moraxella catarrhalis bacteremia in children. Pediatr Infect Dis J 2008; 27:459.
  87. Funaki T, Inoue E, Miyairi I. Clinical characteristics of the patients with bacteremia due to Moraxella catarrhalis in children: a case-control study. BMC Infect Dis 2016; 16:73.
  88. Lieberthal AS, Carroll AE, Chonmaitree T, et al. The diagnosis and management of acute otitis media. Pediatrics 2013; 131:e964.
  89. Post JC, Preston RA, Aul JJ, et al. Molecular analysis of bacterial pathogens in otitis media with effusion. JAMA 1995; 273:1598.
  90. Hendolin PH, Paulin L, Ylikoski J. Clinically applicable multiplex PCR for four middle ear pathogens. J Clin Microbiol 2000; 38:125.
  91. Johansson N, Kalin M, Tiveljung-Lindell A, et al. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clin Infect Dis 2010; 50:202.
  92. Schreckenberger PC, Daneshvar MI, Hollis DG. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. In: Manual of Clinical Microbiology, 9th ed, Murray PR, Baron EJ, Landry ML, et al (Eds), ASM Press, Washington DC 2007. Vol 1, p.770.
  93. Nissinen A, Grönroos P, Huovinen P, et al. Development of beta-lactamase-mediated resistance to penicillin in middle-ear isolates of Moraxella catarrhalis in Finnish children, 1978-1993. Clin Infect Dis 1995; 21:1193.
  94. Yamada K, Arai K, Saito R. Antimicrobial susceptibility to β-lactam antibiotics and production of BRO β-lactamase in clinical isolates of Moraxella catarrhalis from a Japanese hospital. J Microbiol Immunol Infect 2017; 50:386.
  95. Esel D, Ay-Altintop Y, Yagmur G, et al. Evaluation of susceptibility patterns and BRO beta-lactamase types among clinical isolates of Moraxella catarrhalis. Clin Microbiol Infect 2007; 13:1023.
  96. Zhang Y, Zhang F, Wang H, et al. Antimicrobial susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis isolated from community-acquired respiratory tract infections in China: Results from the CARTIPS Antimicrobial Surveillance Program. J Glob Antimicrob Resist 2016; 5:36.
  97. Murphy TF. Vaccine development for Moraxella catarrhalis: rationale, approaches and challenges. Expert Rev Vaccines 2009; 8:655.
  98. Ruckdeschel EA, Kirkham C, Lesse AJ, et al. Mining the Moraxella catarrhalis genome: identification of potential vaccine antigens expressed during human infection. Infect Immun 2008; 76:1599.
  99. Perez AC, Murphy TF. Potential impact of a Moraxella catarrhalis vaccine in COPD. Vaccine 2017.
  100. Perez AC, Murphy TF. A Moraxella catarrhalis vaccine to protect against otitis media and exacerbations of COPD: An update on current progress and challenges. Hum Vaccin Immunother 2017; 13:2322.