Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Mechanisms of glomerular crescent formation

Pierre Ronco, MD, PhD
Section Editors
Richard J Glassock, MD, MACP
Fernando C Fervenza, MD, PhD
Deputy Editor
Albert Q Lam, MD


Cellular glomerular crescents are defined as two or more layers of proliferating cells in Bowman's space (picture 1 and picture 2) and are a hallmark of inflammatory glomerulonephritis and a histologic marker of severe glomerular injury. In general, the severity of the renal failure and other clinical manifestations of glomerulonephritis (eg, hypertension, edema) correlates with the percentage of glomeruli that exhibit crescents [1-6]. The duration and potential reversibility of the underlying disease correspond with the relative predominance of cellular or fibrous components in the crescents. (See 'Course of crescents' below.)

Crescentic glomerulonephritis is typically associated with the syndrome of rapidly progressive glomerulonephritis, which can occur in most forms of inflammatory glomerular injury, including postinfectious glomerulonephritis, IgA nephropathy, lupus nephritis, renal vasculitis, membranoproliferative glomerulonephritis, and anti-glomerular basement membrane (GBM) antibody disease. (See "Glomerular disease: Evaluation and differential diagnosis in adults".)

This topic will review the mechanisms of glomerular crescent formation. The classification, clinical presentation, evaluation, diagnosis, and treatment of crescentic glomerulonephritis, as well as the mechanisms and pathogenesis of glomerular injury, are discussed elsewhere. (See "Overview of the classification and treatment of rapidly progressive (crescentic) glomerulonephritis" and "Mechanisms of immune injury of the glomerulus".)


Glomerular crescent formation appears to represent a nonspecific response to severe injury to the glomerular capillary wall [5]. The initiating event is the development of physical gaps (also called rents or holes) in the glomerular capillary wall, glomerular basement membrane, and Bowman's capsule (picture 2 and picture 3) [7,8]. These gaps permit the entry into Bowman's space of coagulation factors, which lead to fibrin formation (due to conversion of fibrinogen to fibrin polymers and delayed fibrinolysis) and cellular elements (such as monocytes and lymphocytes), both of which promote crescent formation (picture 3) [5,9].

Based upon experimental murine studies, crescent formation is believed to be primarily mediated by a T helper 1 (Th1) nephritogenic immune response involving CD4+ T cells, macrophages, and fibrin as effectors of cell-mediated immunity [10]. Th17 CD4 effector cells also appear to play an important role [11,12] with a potential cytokine-chemokine-driven cross-regulation of Th1 and Th17 subpopulations [13]. Recruitment of Th1 is also controlled by regulatory T cells [14]. (See "T helper subsets: Differentiation and role in disease".)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Oct 30, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Nikolic-Paterson DJ, Atkins RC. The role of macrophages in glomerulonephritis. Nephrol Dial Transplant 2001; 16 Suppl 5:3.
  2. Morrin PA, Hinglais N, Nabarra B, Kreis H. Rapidly progressive glomerulonephritis. A clinical and pathologic study. Am J Med 1978; 65:446.
  3. Whitworth JA, Morel-Maroger L, Mignon F, Richet G. The significance of extracapillary proliferation. Clinicopathological review of 60 patients. Nephron 1976; 16:1.
  4. Couser WG. Glomerulonephritis. Lancet 1999; 353:1509.
  5. Jennette JC. Rapidly progressive crescentic glomerulonephritis. Kidney Int 2003; 63:1164.
  6. Singh SK, Jeansson M, Quaggin SE. New insights into the pathogenesis of cellular crescents. Curr Opin Nephrol Hypertens 2011; 20:258.
  7. Lan HY, Nikolic-Paterson DJ, Atkins RC. Involvement of activated periglomerular leukocytes in the rupture of Bowman's capsule and glomerular crescent progression in experimental glomerulonephritis. Lab Invest 1992; 67:743.
  8. Morel-Maroger Striker L, Killen PD, Chi E, Striker GE. The composition of glomerulosclerosis. I. Studies in focal sclerosis, crescentic glomerulonephritis, and membranoproliferative glomerulonephritis. Lab Invest 1984; 51:181.
  9. Bonsib SM. Glomerular basement membrane discontinuities. Scanning electron microscopic study of acellular glomeruli. Am J Pathol 1985; 119:357.
  10. Kitching AR, Holdsworth SR, Tipping PG. IFN-gamma mediates crescent formation and cell-mediated immune injury in murine glomerulonephritis. J Am Soc Nephrol 1999; 10:752.
  11. Hopfer H, Holzer J, Hünemörder S, et al. Characterization of the renal CD4+ T-cell response in experimental autoimmune glomerulonephritis. Kidney Int 2012; 82:60.
  12. Summers SA, Steinmetz OM, Li M, et al. Th1 and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol 2009; 20:2518.
  13. Paust HJ, Turner JE, Riedel JH, et al. Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. Kidney Int 2012; 82:72.
  14. Paust HJ, Ostmann A, Erhardt A, et al. Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis. Kidney Int 2011; 80:154.
  15. Giorgini A, Brown HJ, Sacks SH, Robson MG. Toll-like receptor 4 stimulation triggers crescentic glomerulonephritis by multiple mechanisms including a direct effect on renal cells. Am J Pathol 2010; 177:644.
  16. Summers SA, Steinmetz OM, Ooi JD, et al. Toll-like receptor 9 enhances nephritogenic immunity and glomerular leukocyte recruitment, exacerbating experimental crescentic glomerulonephritis. Am J Pathol 2010; 177:2234.
  17. Smith J, Lai PC, Behmoaras J, et al. Genes expressed by both mesangial cells and bone marrow-derived cells underlie genetic susceptibility to crescentic glomerulonephritis in the rat. J Am Soc Nephrol 2007; 18:1816.
  18. Tipping PG. Crescentic nephritis--is it in your genes? Nephrol Dial Transplant 2008; 23:3065.
  19. Naish P, Penn GB, Evans DJ, Peters DK. The effect of defibrination on nephrotoxic serum nephritis in rabbits. Clin Sci 1972; 42:643.
  20. Thomson NM, Moran J, Simpson IJ, Peters DK. Defibrination with ancrod in nephrotoxic nephritis in rabbits. Kidney Int 1976; 10:343.
  21. Tipping PG, Erlich JH, Apostolopoulos J, et al. Glomerular tissue factor expression in crescentic glomerulonephritis. Correlations between antigen, activity, and mRNA. Am J Pathol 1995; 147:1736.
  22. Tipping PG, Holdsworth SR. T cells in glomerulonephritis. Springer Semin Immunopathol 2003; 24:377.
  23. Cunningham MA, Kitching AR, Tipping PG, Holdsworth SR. Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int 2004; 66:647.
  24. Erlich JH, Apostolopoulos J, Wun TC, et al. Renal expression of tissue factor pathway inhibitor and evidence for a role in crescentic glomerulonephritis in rabbits. J Clin Invest 1996; 98:325.
  25. Cunningham MA, Ono T, Hewitson TD, et al. Tissue factor pathway inhibitor expression in human crescentic glomerulonephritis. Kidney Int 1999; 55:1311.
  26. Cunningham MA, Rondeau E, Chen X, et al. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J Exp Med 2000; 191:455.
  27. Kitching AR, Holdsworth SR, Ploplis VA, et al. Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 1997; 185:963.
  28. Kitching AR, Kong YZ, Huang XR, et al. Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J Am Soc Nephrol 2003; 14:1487.
  29. Rondeau E, Mougenot B, Lacave R, et al. Plasminogen activator inhibitor 1 in renal fibrin deposits of human nephropathies. Clin Nephrol 1990; 33:55.
  30. Atkins RC, Nikolic-Paterson DJ, Song Q, Lan HY. Modulators of crescentic glomerulonephritis. J Am Soc Nephrol 1996; 7:2271.
  31. Moussa L, Apostolopoulos J, Davenport P, et al. Protease-activated receptor-2 augments experimental crescentic glomerulonephritis. Am J Pathol 2007; 171:800.
  32. Tipping PG, Holdsworth SR. The participation of macrophages, glomerular procoagulant activity, and factor VIII in glomerular fibrin deposition. Studies on anti-GBM antibody-induced glomerulonephritis in rabbits. Am J Pathol 1986; 124:10.
  33. Lan HY, Nikolic-Paterson DJ, Mu W, Atkins RC. Local macrophage proliferation in the pathogenesis of glomerular crescent formation in rat anti-glomerular basement membrane (GBM) glomerulonephritis. Clin Exp Immunol 1997; 110:233.
  34. Li HL, Hancock WW, Dowling JP, Atkins RC. Activated (IL-2R+) intraglomerular mononuclear cells in crescentic glomerulonephritis. Kidney Int 1991; 39:793.
  35. Boucher A, Droz D, Adafer E, Noël LH. Relationship between the integrity of Bowman's capsule and the composition of cellular crescents in human crescentic glomerulonephritis. Lab Invest 1987; 56:526.
  36. Lloyd CM, Dorf ME, Proudfoot A, et al. Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis. J Leukoc Biol 1997; 62:676.
  37. Lan HY, Yu XQ, Yang N, et al. De novo glomerular osteopontin expression in rat crescentic glomerulonephritis. Kidney Int 1998; 53:136.
  38. Wada T, Furuichi K, Segawa-Takaeda C, et al. MIP-1alpha and MCP-1 contribute to crescents and interstitial lesions in human crescentic glomerulonephritis. Kidney Int 1999; 56:995.
  39. Hudkins KL, Giachelli CM, Eitner F, et al. Osteopontin expression in human crescentic glomerulonephritis. Kidney Int 2000; 57:105.
  40. Segerer S, Cui Y, Hudkins KL, et al. Expression of the chemokine monocyte chemoattractant protein-1 and its receptor chemokine receptor 2 in human crescentic glomerulonephritis. J Am Soc Nephrol 2000; 11:2231.
  41. Nishikawa K, Guo YJ, Miyasaka M, et al. Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis. J Exp Med 1993; 177:667.
  42. Adler S, Brady HR. Cell adhesion molecules and the glomerulopathies. Am J Med 1999; 107:371.
  43. Timoshanko JR, Kitching AR, Semple TJ, et al. Granulocyte macrophage colony-stimulating factor expression by both renal parenchymal and immune cells mediates murine crescentic glomerulonephritis. J Am Soc Nephrol 2005; 16:2646.
  44. Lan HY, Nikolic-Paterson DJ, Mu W, et al. Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney Int 1995; 47:1303.
  45. Khan SB, Cook HT, Bhangal G, et al. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int 2005; 67:1812.
  46. Lan HY, Yang N, Metz C, et al. TNF-alpha up-regulates renal MIF expression in rat crescentic glomerulonephritis. Mol Med 1997; 3:136.
  47. Timoshanko JR, Sedgwick JD, Holdsworth SR, Tipping PG. Intrinsic renal cells are the major source of tumor necrosis factor contributing to renal injury in murine crescentic glomerulonephritis. J Am Soc Nephrol 2003; 14:1785.
  48. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994; 331:1286.
  49. Song CY, Kim BC, Hong HK, Lee HS. TGF-beta type II receptor deficiency prevents renal injury via decrease in ERK activity in crescentic glomerulonephritis. Kidney Int 2007; 71:882.
  50. Goumenos DS, Kalliakmani P, Tsakas S, et al. Urinary Transforming Growth Factor-beta 1 as a marker of response to immunosuppressive treatment, in patients with crescentic nephritis. BMC Nephrol 2005; 6:16.
  51. Isaka Y, Akagi Y, Kaneda Y, et al. Gene therapy by transforming growth factor beta receptor-IgG Fc chimera blocked glomerular hypertrophy in diabetic nephropathy (abstract). J Am Soc Nephrol 1997; 8:639A.
  52. Isaka Y, Nakamura H, Mizui M, et al. DNAzyme for TGF-beta suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int 2004; 66:586.
  53. Border WA, Ruoslahti E. Transforming growth factor-beta 1 induces extracellular matrix formation in glomerulonephritis. Cell Differ Dev 1990; 32:425.
  54. Chavele KM, Martinez-Pomares L, Domin J, et al. Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. J Clin Invest 2010; 120:1469.
  55. Sanders JS, van Goor H, Hanemaaijer R, et al. Renal expression of matrix metalloproteinases in human ANCA-associated glomerulonephritis. Nephrol Dial Transplant 2004; 19:1412.
  56. Nakopoulou L, Lazaris AC, Boletis I, et al. The expression of matrix metalloproteinase-11 protein in various types of glomerulonephritis. Nephrol Dial Transplant 2007; 22:109.
  57. Lelongt B, Bengatta S, Delauche M, et al. Matrix metalloproteinase 9 protects mice from anti-glomerular basement membrane nephritis through its fibrinolytic activity. J Exp Med 2001; 193:793.
  58. Han Y, Ma FY, Tesch GH, et al. Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis. Am J Physiol Renal Physiol 2013; 304:F1043.
  59. Vielhauer V, Kulkarni O, Reichel CA, Anders HJ. Targeting the recruitment of monocytes and macrophages in renal disease. Semin Nephrol 2010; 30:318.
  60. Hochheiser K, Engel DR, Hammerich L, et al. Kidney Dendritic Cells Become Pathogenic during Crescentic Glomerulonephritis with Proteinuria. J Am Soc Nephrol 2011; 22:306.
  61. Nelson PJ, Rees AJ, Griffin MD, et al. The renal mononuclear phagocytic system. J Am Soc Nephrol 2012; 23:194.
  62. Reynolds J, Cook PR, Ryan JJ, et al. Segregation of experimental autoimmune glomerulonephritis as a complex genetic trait and exclusion of Col4a3 as a candidate gene. Exp Nephrol 2002; 10:402.
  63. Behmoaras J, Smith J, D'Souza Z, et al. Genetic loci modulate macrophage activity and glomerular damage in experimental glomerulonephritis. J Am Soc Nephrol 2010; 21:1136.
  64. Aitman TJ, Dong R, Vyse TJ, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439:851.
  65. Page TH, D'Souza Z, Nakanishi S, et al. Role of novel rat-specific Fc receptor in macrophage activation associated with crescentic glomerulonephritis. J Biol Chem 2012; 287:5710.
  66. Smith J, McDaid JP, Bhangal G, et al. A spleen tyrosine kinase inhibitor reduces the severity of established glomerulonephritis. J Am Soc Nephrol 2010; 21:231.
  67. Behmoaras J, Bhangal G, Smith J, et al. Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility. Nat Genet 2008; 40:553.
  68. Hull RP, Srivastava PK, D'Souza Z, et al. Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1β synthesis in macrophages. BMC Genomics 2013; 14:92.
  69. Deplano S, Cook HT, Russell R, et al. P2X7 receptor-mediated Nlrp3-inflammasome activation is a genetic determinant of macrophage-dependent crescentic glomerulonephritis. J Leukoc Biol 2013; 93:127.
  70. Cunningham MA, Huang XR, Dowling JP, et al. Prominence of cell-mediated immunity effectors in "pauci-immune" glomerulonephritis. J Am Soc Nephrol 1999; 10:499.
  71. Kitching AR, Turner AL, Wilson GR, et al. IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. J Am Soc Nephrol 2005; 16:2023.
  72. Odobasic D, Kitching AR, Semple TJ, et al. Glomerular expression of CD80 and CD86 is required for leukocyte accumulation and injury in crescentic glomerulonephritis. J Am Soc Nephrol 2005; 16:2012.
  73. Timoshanko JR, Kitching AR, Semple TJ, et al. A pathogenetic role for mast cells in experimental crescentic glomerulonephritis. J Am Soc Nephrol 2006; 17:150.
  74. Lan HY, Bacher M, Yang N, et al. The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. J Exp Med 1997; 185:1455.
  75. Hyodo T, Oda T, Kikuchi Y, et al. Voltage-gated potassium channel Kv1.3 blocker as a potential treatment for rat anti-glomerular basement membrane glomerulonephritis. Am J Physiol Renal Physiol 2010; 299:F1258.
  76. Nitta K, Horita S, Honda K, et al. Glomerular expression of cell-cycle-regulatory proteins in human crescentic glomerulonephritis. Virchows Arch 1999; 435:422.
  77. Smeets B, Uhlig S, Fuss A, et al. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol 2009; 20:2604.
  78. Shirato I, Asanuma K, Takeda Y, et al. Protein gene product 9.5 is selectively localized in parietal epithelial cells of Bowman's capsule in the rat kidney. J Am Soc Nephrol 2000; 11:2381.
  79. Barisoni L, Nelson PJ. Collapsing glomerulopathy: an inflammatory podocytopathy? Curr Opin Nephrol Hypertens 2007; 16:192.
  80. Appel D, Kershaw DB, Smeets B, et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 2009; 20:333.
  81. Le Hir M, Keller C, Eschmann V, et al. Podocyte bridges between the tuft and Bowman's capsule: an early event in experimental crescentic glomerulonephritis. J Am Soc Nephrol 2001; 12:2060.
  82. Moeller MJ, Soofi A, Hartmann I, et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J Am Soc Nephrol 2004; 15:61.
  83. Bariéty J, Bruneval P, Meyrier A, et al. Podocyte involvement in human immune crescentic glomerulonephritis. Kidney Int 2005; 68:1109.
  84. Bariety J, Hill GS, Mandet C, et al. Glomerular epithelial-mesenchymal transdifferentiation in pauci-immune crescentic glomerulonephritis. Nephrol Dial Transplant 2003; 18:1777.
  85. Thorner PS, Ho M, Eremina V, et al. Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol 2008; 19:495.
  86. Ding M, Cui S, Li C, et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 2006; 12:1081.
  87. Bollée G, Flamant M, Schordan S, et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 2011; 17:1242.
  88. Flamant M, Bollée G, Hénique C, Tharaux PL. Epidermal growth factor: a new therapeutic target in glomerular disease. Nephrol Dial Transplant 2012; 27:1297.
  89. Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 2009; 20:322.
  90. Smeets B, Angelotti ML, Rizzo P, et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol 2009; 20:2593.
  91. Ng YY, Fan JM, Mu W, et al. Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol Dial Transplant 1999; 14:2860.
  92. Bennett WM, Kincaid-Smith P. Macroscopic hematuria in mesangial IgA nephropathy: correlation with glomerular crescents and renal dysfunction. Kidney Int 1983; 23:393.
  93. Praga M, Gutierrez-Millet V, Navas JJ, et al. Acute worsening of renal function during episodes of macroscopic hematuria in IgA nephropathy. Kidney Int 1985; 28:69.
  94. Fogazzi GB, Imbasciati E, Moroni G, et al. Reversible acute renal failure from gross haematuria due to glomerulonephritis: not only in IgA nephropathy and not associated with intratubular obstruction. Nephrol Dial Transplant 1995; 10:624.
  95. Kriz W, Hähnel B, Hosser H, et al. Pathways to recovery and loss of nephrons in anti-Thy-1 nephritis. J Am Soc Nephrol 2003; 14:1904.
  96. Chevalier RL, Forbes MS. Generation and evolution of atubular glomeruli in the progression of renal disorders. J Am Soc Nephrol 2008; 19:197.