Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Investigational biologic markers in the diagnosis and assessment of rheumatoid arthritis

Peter C Taylor, MA, PhD, FRCP
Ravinder N Maini, BA, MB BChir, FRCP, FMedSci, FRS
Section Editor
James R O'Dell, MD
Deputy Editor
Paul L Romain, MD


Patients with rheumatoid arthritis (RA) follow a variable disease course with regard to outcome measures such as functional status or radiological assessment of joint damage. Early identification of patients with RA and, in particular, of those likely to assume a more rapidly destructive form of disease is important because of the possible benefit from early, aggressive intervention with disease-modifying agents. This realization has prompted the investigation and measurement of numerous biologic "markers" in blood and joint fluids that may serve as indicators of prognosis and the response to therapy. Although some of the markers under consideration are accessible in routine practice, many are in the stage of experimental evaluation and require access to specialized technology and customized reagents.


Among the many biologic markers that have been assessed for usefulness in estimating disease activity and prognosis of rheumatoid arthritis (RA), only a few have found a role in clinical practice. The main clinically useful biologic markers in patients with RA include rheumatoid factors (RF), anti-cyclic citrullinated peptide (anti-CCP) antibodies, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP). These tests and their clinical use in diagnosis and assessment of disease outcome are discussed in detail elsewhere. (See "Biologic markers in the diagnosis and assessment of rheumatoid arthritis".)


Potential biologic markers that remain investigational can be considered in four categories:

Immunologic (or serologic) abnormalities

Genetic factors, such as human leukocyte antigen (HLA) class II

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Sep 27, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Young BJ, Mallya RK, Leslie RD, et al. Anti-keratin antibodies in rheumatoid arthritis. Br Med J 1979; 2:97.
  3. Sebbag M, Simon M, Vincent C, et al. The antiperinuclear factor and the so-called antikeratin antibodies are the same rheumatoid arthritis-specific autoantibodies. J Clin Invest 1995; 95:2672.
  4. Palosuo T, Lukka M, Alenius H, et al. Purification of filaggrin from human epidermis and measurement of antifilaggrin autoantibodies in sera from patients with rheumatoid arthritis by an enzyme-linked immunosorbent assay. Int Arch Allergy Immunol 1998; 115:294.
  5. Schellekens GA, de Jong BA, van den Hoogen FH, et al. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998; 101:273.
  6. Nielen MM, van der Horst AR, van Schaardenburg D, et al. Antibodies to citrullinated human fibrinogen (ACF) have diagnostic and prognostic value in early arthritis. Ann Rheum Dis 2005; 64:1199.
  7. Vander Cruyssen B, Cantaert T, Nogueira L, et al. Diagnostic value of anti-human citrullinated fibrinogen ELISA and comparison with four other anti-citrullinated protein assays. Arthritis Res Ther 2006; 8:R122.
  8. Dejaco C, Klotz W, Larcher H, et al. Diagnostic value of antibodies against a modified citrullinated vimentin in rheumatoid arthritis. Arthritis Res Ther 2006; 8:R119.
  9. Bang H, Egerer K, Gauliard A, et al. Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum 2007; 56:2503.
  10. Koivula MK, Heliövaara M, Ramberg J, et al. Autoantibodies binding to citrullinated telopeptide of type II collagen and to cyclic citrullinated peptides predict synergistically the development of seropositive rheumatoid arthritis. Ann Rheum Dis 2007; 66:1450.
  11. Lundberg K, Kinloch A, Fisher BA, et al. Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum 2008; 58:3009.
  12. Nicaise Roland P, Grootenboer Mignot S, Bruns A, et al. Antibodies to mutated citrullinated vimentin for diagnosing rheumatoid arthritis in anti-CCP-negative patients and for monitoring infliximab therapy. Arthritis Res Ther 2008; 10:R142.
  13. Snir O, Widhe M, von Spee C, et al. Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: association with HLA-DRB1 alleles. Ann Rheum Dis 2009; 68:736.
  14. Hoet R, van Venroijj WJ. The antiperinuclear factor (APF) and antikeratin antibodies (AKA) in rheumatoid arthritis. In: Rheumatoid Arthritis, Smolen JS, Kalden JR, Maini RN (Eds), Springer-Verlag, Berlin 1992. p.299.
  15. Vivino FB, Maul GG. Histologic and electron microscopic characterization of the antiperinuclear factor antigen. Arthritis Rheum 1990; 33:960.
  16. Janssens X, Veys EM, Verbruggen G, Declercq L. The diagnostic significance of the antiperinuclear factor for rheumatoid arthritis. J Rheumatol 1988; 15:1346.
  17. Hoet RM, Boerbooms AM, Arends M, et al. Antiperinuclear factor, a marker autoantibody for rheumatoid arthritis: colocalisation of the perinuclear factor and profilaggrin. Ann Rheum Dis 1991; 50:611.
  18. Gomès-Daudrix V, Sebbag M, Girbal E, et al. Immunoblotting detection of so-called 'antikeratin antibodies': a new assay for the diagnosis of rheumatoid arthritis. Ann Rheum Dis 1994; 53:735.
  19. Combe B, Dougados M, Goupille P, et al. Prognostic factors for radiographic damage in early rheumatoid arthritis: a multiparameter prospective study. Arthritis Rheum 2001; 44:1736.
  20. von Essen R, Kurki P, Isomäki H, et al. Prospect for an additional laboratory criterion for rheumatoid arthritis. Scand J Rheumatol 1993; 22:267.
  21. Kurki P, von Essen R, Kaarela K, et al. Antibody to stratum corneum (antikeratin antibody) and antiperinuclear factor: markers for progressive rheumatoid arthritis. Scand J Rheumatol 1997; 26:346.
  22. Paimela L, Palosuo T, Aho K, et al. Association of autoantibodies to filaggrin with an active disease in early rheumatoid arthritis. Ann Rheum Dis 2001; 60:32.
  23. Kurki P, Aho K, Palosuo T, Heliövaara M. Immunopathology of rheumatoid arthritis. Antikeratin antibodies precede the clinical disease. Arthritis Rheum 1992; 35:914.
  24. Aho K, von Essen R, Kurki P, et al. Antikeratin antibody and antiperinuclear factor as markers for subclinical rheumatoid disease process. J Rheumatol 1993; 20:1278.
  25. Aho K, Palosuo T, Heliövaara M, et al. Antifilaggrin antibodies within "normal" range predict rheumatoid arthritis in a linear fashion. J Rheumatol 2000; 27:2743.
  26. Kessel A, Rosner I, Zuckerman E, et al. Use of antikeratin antibodies to distinguish between rheumatoid arthritis and polyarthritis associated with hepatitis C infection. J Rheumatol 2000; 27:610.
  27. Vossenaar ER, Després N, Lapointe E, et al. Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Res Ther 2004; 6:R142.
  28. Innala L, Kokkonen H, Eriksson C, et al. Antibodies against mutated citrullinated vimentin are a better predictor of disease activity at 24 months in early rheumatoid arthritis than antibodies against cyclic citrullinated peptides. J Rheumatol 2008; 35:1002.
  29. Hayem G, Chazerain P, Combe B, et al. Anti-Sa antibody is an accurate diagnostic and prognostic marker in adult rheumatoid arthritis. J Rheumatol 1999; 26:7.
  30. López-Longo FJ, Rodríguez-Mahou M, Sánchez-Ramón S, et al. Anti-cyclic citrullinated peptide versus anti-Sa antibodies in diagnosis of rheumatoid arthritis in an outpatient clinic for connective tissue disease and spondyloarthritis. J Rheumatol 2006; 33:1476.
  31. Bläss S, Union A, Raymackers J, et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum 2001; 44:761.
  32. Hassfeld W, Steiner G, Graninger W, et al. Autoantibody to the nuclear antigen RA33: a marker for early rheumatoid arthritis. Br J Rheumatol 1993; 32:199.
  33. Hassfeld W, Steiner G, Studnicka-Benke A, et al. Autoimmune response to the spliceosome. An immunologic link between rheumatoid arthritis, mixed connective tissue disease, and systemic lupus erythematosus. Arthritis Rheum 1995; 38:777.
  34. Isenberg DA, Steiner G, Smolen JS. Clinical utility and serological connections of anti-RA33 antibodies in systemic lupus erythematosus. J Rheumatol 1994; 21:1260.
  35. Mustila A, Paimela L, Leirisalo-Repo M, et al. Antineutrophil cytoplasmic antibodies in patients with early rheumatoid arthritis: an early marker of progressive erosive disease. Arthritis Rheum 2000; 43:1371.
  36. Parekh RB, Dwek RA, Sutton BJ, et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 1985; 316:452.
  37. Rook GA, Steele J, Brealey R, et al. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J Autoimmun 1991; 4:779.
  38. Malhotra R, Wormald MR, Rudd PM, et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1995; 1:237.
  39. Graudal NA, Madsen HO, Tarp U, et al. The association of variant mannose-binding lectin genotypes with radiographic outcome in rheumatoid arthritis. Arthritis Rheum 2000; 43:515.
  40. Ip WK, Lau YL, Chan SY, et al. Mannose-binding lectin and rheumatoid arthritis in southern Chinese. Arthritis Rheum 2000; 43:1679.
  41. Young A, Sumar N, Bodman K, et al. Agalactosyl IgG: an aid to differential diagnosis in early synovitis. Arthritis Rheum 1991; 34:1425.
  42. Saulot V, Vittecoq O, Charlionet R, et al. Presence of autoantibodies to the glycolytic enzyme alpha-enolase in sera from patients with early rheumatoid arthritis. Arthritis Rheum 2002; 46:1196.
  43. van Gaalen FA, Toes RE, Ditzel HJ, et al. Association of autoantibodies to glucose-6-phosphate isomerase with extraarticular complications in rheumatoid arthritis. Arthritis Rheum 2004; 50:395.
  44. Mewar D, Moore DJ, Young-Min S, et al. Antiferritin antibodies discovered by phage display expression cloning are associated with radiographic damage in rheumatoid arthritis. Arthritis Rheum 2005; 52:3868.
  45. Zhao J, Zhao Y, He J, et al. Prevalence and significance of anti-peptidylarginine deiminase 4 antibodies in rheumatoid arthritis. J Rheumatol 2008; 35:969.
  46. Berner B, Wolf G, Hummel KM, et al. Increased expression of CD40 ligand (CD154) on CD4+ T cells as a marker of disease activity in rheumatoid arthritis. Ann Rheum Dis 2000; 59:190.
  47. Wouters D, Voskuyl AE, Molenaar ET, et al. Evaluation of classical complement pathway activation in rheumatoid arthritis: measurement of C1q-C4 complexes as novel activation products. Arthritis Rheum 2006; 54:1143.
  48. Constantin A, Lauwers-Cancès V, Navaux F, et al. Stromelysin 1 (matrix metalloproteinase 3) and HLA-DRB1 gene polymorphisms: Association with severity and progression of rheumatoid arthritis in a prospective study. Arthritis Rheum 2002; 46:1754.
  49. Lard LR, van Gaalen FA, Schonkeren JJ, et al. Association of the -2849 interleukin-10 promoter polymorphism with autoantibody production and joint destruction in rheumatoid arthritis. Arthritis Rheum 2003; 48:1841.
  50. Emery P, Bradley H, Arthur V, et al. Genetic factors influencing the outcome of early arthritis--the role of sulphoxidation status. Br J Rheumatol 1992; 31:449.
  51. Gauldie J, Richards C, Harnish D, et al. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci U S A 1987; 84:7251.
  52. van Gameren MM, Willemse PH, Mulder NH, et al. Effects of recombinant human interleukin-6 in cancer patients: a phase I-II study. Blood 1994; 84:1434.
  53. Means RT Jr, Krantz SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 1992; 80:1639.
  54. van Leeuwen MA, Westra J, Limburg PC, et al. Clinical significance of interleukin-6 measurement in early rheumatoid arthritis: relation with laboratory and clinical variables and radiological progression in a three year prospective study. Ann Rheum Dis 1995; 54:674.
  55. Engström-Laurent A, Hällgren R. Circulating hyaluronate in rheumatoid arthritis: relationship to inflammatory activity and the effect of corticosteroid therapy. Ann Rheum Dis 1985; 44:83.
  56. Poole AR, Witter J, Roberts N, et al. Inflammation and cartilage metabolism in rheumatoid arthritis. Studies of the blood markers hyaluronic acid, orosomucoid, and keratan sulfate. Arthritis Rheum 1990; 33:790.
  57. Dahl IM, Husby G. Hyaluronic acid production in vitro by synovial lining cells from normal and rheumatoid joints. Ann Rheum Dis 1985; 44:647.
  58. Paimela L, Heiskanen A, Kurki P, et al. Serum hyaluronate level as a predictor of radiologic progression in early rheumatoid arthritis. Arthritis Rheum 1991; 34:815.
  59. Manicourt DH, Poilvache P, Nzeusseu A, et al. Serum levels of hyaluronan, antigenic keratan sulfate, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 change predictably in rheumatoid arthritis patients who have begun activity after a night of bed rest. Arthritis Rheum 1999; 42:1861.
  60. Yamanaka H, Matsuda Y, Tanaka M, et al. Serum matrix metalloproteinase 3 as a predictor of the degree of joint destruction during the six months after measurement, in patients with early rheumatoid arthritis. Arthritis Rheum 2000; 43:852.
  61. Green MJ, Gough AK, Devlin J, et al. Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology (Oxford) 2003; 42:83.
  62. Masuda M, Morimoto T, De Haas M, et al. Increase of soluble FcgRIIIa derived from natural killer cells and macrophages in plasma from patients with rheumatoid arthritis. J Rheumatol 2003; 30:1911.
  63. Kilani RT, Maksymowych WP, Aitken A, et al. Detection of high levels of 2 specific isoforms of 14-3-3 proteins in synovial fluid from patients with joint inflammation. J Rheumatol 2007; 34:1650.
  64. Maksymowych WP, Naides SJ, Bykerk V, et al. Serum 14-3-3η is a novel marker that complements current serological measurements to enhance detection of patients with rheumatoid arthritis. J Rheumatol 2014; 41:2104.
  65. Maksymowych WP, van der Heijde D, Allaart CF, et al. 14-3-3η is a novel mediator associated with the pathogenesis of rheumatoid arthritis and joint damage. Arthritis Res Ther 2014; 16:R99.
  66. Forslind K, Eberhardt K, Jonsson A, Saxne T. Increased serum concentrations of cartilage oligomeric matrix protein. A prognostic marker in early rheumatoid arthritis. Br J Rheumatol 1992; 31:593.
  67. Månsson B, Carey D, Alini M, et al. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest 1995; 95:1071.
  68. Månsson B, Geborek P, Saxne T. Cartilage and bone macromolecules in knee joint synovial fluid in rheumatoid arthritis: relation to development of knee or hip joint destruction. Ann Rheum Dis 1997; 56:91.
  69. Saxne T, Heinegård D. Synovial fluid analysis of two groups of proteoglycan epitopes distinguishes early and late cartilage lesions. Arthritis Rheum 1992; 35:385.
  70. Garnero P, Landewé R, Boers M, et al. Association of baseline levels of markers of bone and cartilage degradation with long-term progression of joint damage in patients with early rheumatoid arthritis: the COBRA study. Arthritis Rheum 2002; 46:2847.
  71. Landewé R, Geusens P, Boers M, et al. Markers for type II collagen breakdown predict the effect of disease-modifying treatment on long-term radiographic progression in patients with rheumatoid arthritis. Arthritis Rheum 2004; 50:1390.
  72. Charni N, Juillet F, Garnero P. Urinary type II collagen helical peptide (HELIX-II) as a new biochemical marker of cartilage degradation in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 2005; 52:1081.
  73. Young-Min S, Cawston T, Marshall N, et al. Biomarkers predict radiographic progression in early rheumatoid arthritis and perform well compared with traditional markers. Arthritis Rheum 2007; 56:3236.
  74. Saxne T, Zunino L, Heinegård D. Increased release of bone sialoprotein into synovial fluid reflects tissue destruction in rheumatoid arthritis. Arthritis Rheum 1995; 38:82.
  75. Kollerup G, Hansen M, Hørslev-Petersen K. Urinary hydroxypyridinium cross-links of collagen in rheumatoid arthritis. Relation to disease activity and effects of methylprednisolone. Br J Rheumatol 1994; 33:816.
  76. Paimela L, Leirisalo-Repo M, Risteli L, et al. Type I collagen degradation product in serum of patients with early rheumatoid arthritis: relationship to disease activity and radiological progression in a 3-year follow-up. Br J Rheumatol 1994; 33:1012.
  77. Aman S, Risteli J, Luukkainen R, et al. The value of synovial fluid analysis in the assessment of knee joint destruction in arthritis in a three year follow up study. Ann Rheum Dis 1999; 58:559.
  78. Hakala M, Risteli J, Aman S, et al. Combination drug strategy in recent-onset rheumatoid arthritis suppresses collagen I degradation and is associated with retardation of radiological progression. Scand J Rheumatol 2008; 37:90.
  79. Geusens PP, Landewé RB, Garnero P, et al. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum 2006; 54:1772.
  80. Harada M, Mitsuyama K, Yoshida H, et al. Vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 1998; 27:377.
  81. Ballara S, Taylor PC, Reusch P, et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 2001; 44:2055.
  82. Nagashima M, Wauke K, Hirano D, et al. Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth factor in cultured synoviocytes and patients with rheumatoid arthritis. Rheumatology (Oxford) 2000; 39:1255.
  83. Rioja I, Hughes FJ, Sharp CH, et al. Potential novel biomarkers of disease activity in rheumatoid arthritis patients: CXCL13, CCL23, transforming growth factor alpha, tumor necrosis factor receptor superfamily member 9, and macrophage colony-stimulating factor. Arthritis Rheum 2008; 58:2257.
  84. Centola M, Cavet G, Shen Y, et al. Development of a multi-biomarker disease activity test for rheumatoid arthritis. PLoS One 2013; 8:e60635.
  85. van der Helm-van Mil AH, Knevel R, Cavet G, et al. An evaluation of molecular and clinical remission in rheumatoid arthritis by assessing radiographic progression. Rheumatology (Oxford) 2013; 52:839.
  86. Hambardzumyan K, Saevarsdottir S, Forslind K, et al. A Multi-Biomarker Disease Activity Score and the Choice of Second-Line Therapy in Early Rheumatoid Arthritis After Methotrexate Failure. Arthritis Rheumatol 2017; 69:953.
  87. Fleischmann R, Connolly SE, Maldonado MA, Schiff M. Brief Report: Estimating Disease Activity Using Multi-Biomarker Disease Activity Scores in Rheumatoid Arthritis Patients Treated With Abatacept or Adalimumab. Arthritis Rheumatol 2016; 68:2083.
  88. Reiss WG, Devenport JN, Low JM, et al. Interpreting the multi-biomarker disease activity score in the context of tocilizumab treatment for patients with rheumatoid arthritis. Rheumatol Int 2016; 36:295.