Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Initial management of regionally localized intermediate-, high-, and very high-risk prostate cancer

John F Ward, MD, FACS
Nicholas Vogelzang, MD
Brian Davis, MD, PhD
Section Editors
W Robert Lee, MD, MS, MEd
Jerome P Richie, MD, FACS
Deputy Editor
Michael E Ross, MD


Prostate cancer is increasingly diagnosed in younger men and at an earlier disease stage [1,2]. However, some men with newly diagnosed prostate cancer have a more extensive primary tumor (T2b or higher), regional lymph node metastases (N1), or other factors associated with an increased risk of local recurrence or progression to disseminated disease (serum prostate-specific antigen [PSA] ≥10 ng/mL or Gleason grade group 3 or higher) (table 1 and table 2A-B) [1]. (See "Prostate cancer: Risk stratification and choice of initial treatment".)

This topic discusses the initial management approach for prostate cancer at increased risk for recurrence and dissemination based upon clinical staging. The approaches to the treatment of low-risk prostate cancer and distant metastases are discussed separately. The management of patients who are managed with radical prostatectomy and are considered at increased risk following pathologic staging is also discussed separately.

(See "Initial approach to low- and very low-risk clinically localized prostate cancer".)

(See "Overview of the treatment of disseminated castration-sensitive prostate cancer".)

(See "Prostate cancer: Pathologic stage T3 disease or positive surgical margins following radical prostatectomy".)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Dec 05, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Roach M 3rd, Weinberg V, Sandler H, Thompson I. Staging for prostate cancer: time to incorporate pretreatment prostate-specific antigen and Gleason score? Cancer 2007; 109:213.
  2. Gallina A, Chun FK, Suardi N, et al. Comparison of stage migration patterns between Europe and the USA: an analysis of 11 350 men treated with radical prostatectomy for prostate cancer. BJU Int 2008; 101:1513.
  3. Davis BJ, Horwitz EM, Lee WR, et al. American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy. Brachytherapy 2012; 11:6.
  4. Nguyen PL, Aizer A, Assimos DG, et al. ACR Appropriateness Criteria® Definitive External-Beam Irradiation in stage T1 and T2 prostate cancer. Am J Clin Oncol 2014; 37:278.
  5. Davis BJ, Taira AV, Nguyen PL, et al. ACR appropriateness criteria: Permanent source brachytherapy for prostate cancer. Brachytherapy 2017; 16:266.
  6. Sanda MG, Dunn RL, Michalski J, et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 2008; 358:1250.
  7. Hamdy FC, Donovan JL, Lane JA, et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med 2016; 375:1415.
  8. Warde P, Mason M, Ding K, et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 2011; 378:2104.
  9. Mason MD, Parulekar WR, Sydes MR, et al. Final Report of the Intergroup Randomized Study of Combined Androgen-Deprivation Therapy Plus Radiotherapy Versus Androgen-Deprivation Therapy Alone in Locally Advanced Prostate Cancer. J Clin Oncol 2015; 33:2143.
  10. Brundage M, Sydes MR, Parulekar WR, et al. Impact of Radiotherapy When Added to Androgen-Deprivation Therapy for Locally Advanced Prostate Cancer: Long-Term Quality-of-Life Outcomes From the NCIC CTG PR3/MRC PR07 Randomized Trial. J Clin Oncol 2015; 33:2151.
  11. Fosså SD, Wiklund F, Klepp O, et al. Ten- and 15-yr Prostate Cancer-specific Mortality in Patients with Nonmetastatic Locally Advanced or Aggressive Intermediate Prostate Cancer, Randomized to Lifelong Endocrine Treatment Alone or Combined with Radiotherapy: Final Results of The Scandinavian Prostate Cancer Group-7. Eur Urol 2016; 70:684.
  12. Wilt TJ, Brawer MK, Jones KM, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 2012; 367:203.
  13. Zelefsky MJ, Yamada Y, Fuks Z, et al. Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 2008; 71:1028.
  14. Stone NN, Potters L, Davis BJ, et al. Multicenter analysis of effect of high biologic effective dose on biochemical failure and survival outcomes in patients with Gleason score 7-10 prostate cancer treated with permanent prostate brachytherapy. Int J Radiat Oncol Biol Phys 2009; 73:341.
  15. Koontz BF, Chino J, Lee WR, et al. Morbidity and prostate-specific antigen control of external beam radiation therapy plus low-dose-rate brachytherapy boost for low, intermediate, and high-risk prostate cancer. Brachytherapy 2009; 8:191.
  16. Khaksar SJ, Langley SE, Lovell D, Laing RW. Interstitial low dose rate brachytherapy for prostate cancer--a focus on intermediate- and high-risk disease. Clin Oncol (R Coll Radiol) 2006; 18:513.
  17. Prestidge BR, Winter K, Sanda MG, et al. Initial report of NRG Oncology/RTOG 0232: a phase 3 study comparing combined external beam radiation and transperineal interstitial permanent brachytherapy with brachytherapy alone for selected patients with intermediate-risk prostatic carcinoma (abstract). American Society for Radiation Oncology 2016 annual meeting.
  18. Morris WJ, Tyldesley S, Rodda S, et al. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int J Radiat Oncol Biol Phys 2017; 98:275.
  19. Hsu IC, Yamada Y, Assimos DG, et al. ACR Appropriateness Criteria high-dose-rate brachytherapy for prostate cancer. Brachytherapy 2014; 13:27.
  20. Hsu IC, Bae K, Shinohara K, et al. Phase II trial of combined high-dose-rate brachytherapy and external beam radiotherapy for adenocarcinoma of the prostate: preliminary results of RTOG 0321. Int J Radiat Oncol Biol Phys 2010; 78:751.
  21. Sathya JR, Davis IR, Julian JA, et al. Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol 2005; 23:1192.
  22. Dayes IS, Parpia S, Gilbert J, et al. Long-Term Results of a Randomized Trial Comparing Iridium Implant Plus External Beam Radiation Therapy With External Beam Radiation Therapy Alone in Node-Negative Locally Advanced Cancer of the Prostate. Int J Radiat Oncol Biol Phys 2017; 99:90.
  23. Hoskin PJ, Motohashi K, Bownes P, et al. High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: initial results of a randomised phase three trial. Radiother Oncol 2007; 84:114.
  24. Hoskin PJ, Rojas AM, Bownes PJ, et al. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother Oncol 2012; 103:217.
  25. Zelefsky MJ, Kuban DA, Levy LB, et al. Multi-institutional analysis of long-term outcome for stages T1-T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys 2007; 67:327.
  26. Ward JF, Slezak JM, Blute ML, et al. Radical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-year outcome. BJU Int 2005; 95:751.
  27. Roach M 3rd, DeSilvio M, Lawton C, et al. Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol 2003; 21:1904.
  28. Lawton CA, DeSilvio M, Roach M 3rd, et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94-13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys 2007; 69:646.
  29. Roach M 3rd, Marquez C, Yuo HS, et al. Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 1994; 28:33.
  30. Pommier P, Chabaud S, Lagrange JL, et al. Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Preliminary results of GETUG-01. J Clin Oncol 2007; 25:5366.
  31. Buyyounouski MK, Hanlon AL, Horwitz EM, et al. Biochemical failure and the temporal kinetics of prostate-specific antigen after radiation therapy with androgen deprivation. Int J Radiat Oncol Biol Phys 2005; 61:1291.
  32. Roach M 3rd, Bae K, Speight J, et al. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol 2008; 26:585.
  33. Bolla M, Van Tienhoven G, Warde P, et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 2010; 11:1066.
  34. Pilepich MV, Winter K, Lawton CA, et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma--long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys 2005; 61:1285.
  35. Lawton CA, Winter K, Grignon D, Pilepich MV. Androgen suppression plus radiation versus radiation alone for patients with stage D1/pathologic node-positive adenocarcinoma of the prostate: updated results based on national prospective randomized trial Radiation Therapy Oncology Group 85-31. J Clin Oncol 2005; 23:800.
  36. Published erratum in J Clin Oncol 2005; 23:8921.
  37. D'Amico AV, Chen MH, Renshaw AA, et al. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA 2008; 299:289.
  38. D'Amico AV, Chen MH, Renshaw A, et al. Long-term Follow-up of a Randomized Trial of Radiation With or Without Androgen Deprivation Therapy for Localized Prostate Cancer. JAMA 2015; 314:1291.
  39. Giacalone NJ, Wu J, Chen MH, et al. Prostate-Specific Antigen Failure and Risk of Death Within Comorbidity Subgroups Among Men With Unfavorable-Risk Prostate Cancer Treated in a Randomized Trial. J Clin Oncol 2016.
  40. Hanks GE, Pajak TF, Porter A, et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92-02. J Clin Oncol 2003; 21:3972.
  41. Horwitz EM, Bae K, Hanks GE, et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol 2008; 26:2497.
  42. Bolla M, de Reijke TM, Van Tienhoven G, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med 2009; 360:2516.
  43. Souhami L, Bae K, Pilepich M, Sandler H. Impact of the duration of adjuvant hormonal therapy in patients with locally advanced prostate cancer treated with radiotherapy: a secondary analysis of RTOG 85-31. J Clin Oncol 2009; 27:2137.
  44. Denham JW, Steigler A, Lamb DS, et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol 2011; 12:451.
  45. Denham JW, Wilcox C, Joseph D, et al. Quality of life in men with locally advanced prostate cancer treated with leuprorelin and radiotherapy with or without zoledronic acid (TROG 03.04 RADAR): secondary endpoints from a randomised phase 3 factorial trial. Lancet Oncol 2012; 13:1260.
  46. Lawton CAF, Lin X, Hanks GE, et al. Duration of Androgen Deprivation in Locally Advanced Prostate Cancer: Long-Term Update of NRG Oncology RTOG 9202. Int J Radiat Oncol Biol Phys 2017; 98:296.
  47. Zapatero A, Guerrero A, Maldonado X, et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial. Lancet Oncol 2015; 16:320.
  48. Nabid A, et al. Duration of androgen deprivation therapy in high-risk prostate cancer: A randomized trial (abstract LBA4510). American Society of Clinical Oncology 2013 meeting.
  49. Nabid A, Carrier N, Vigneault E, at al. Radiation therapy with or without short-term androgen deprivation therapy in intermediate risk prostate cancer: Results of a phase III trial. Abstracts LBA 8. 2015 ASTRO conference.
  50. Bolla M, Maingon P, Carrie C, et al. Short Androgen Suppression and Radiation Dose Escalation for Intermediate- and High-Risk Localized Prostate Cancer: Results of EORTC Trial 22991. J Clin Oncol 2016; 34:1748.
  51. Pisansky TM, Hunt D, Gomella LG, et al. Duration of androgen suppression before radiotherapy for localized prostate cancer: radiation therapy oncology group randomized clinical trial 9910. J Clin Oncol 2015; 33:332.
  52. Naik M, Reddy CA, Stephans KL, et al. Posttreatment Prostate-Specific Antigen 6 Months After Radiation With Androgen Deprivation Therapy Predicts for Distant Metastasis-Free Survival and Prostate Cancer-Specific Mortality. Int J Radiat Oncol Biol Phys 2016; 96:617.
  53. Nanda A, Chen MH, Moran BJ, et al. Total androgen blockade versus a luteinizing hormone-releasing hormone agonist alone in men with high-risk prostate cancer treated with radiotherapy. Int J Radiat Oncol Biol Phys 2010; 76:1439.
  54. D'Amico AV, Moran BJ, Braccioforte MH, et al. Risk of death from prostate cancer after brachytherapy alone or with radiation, androgen suppression therapy, or both in men with high-risk disease. J Clin Oncol 2009; 27:3923.
  55. Fizazi K, Faivre L, Lesaunier F, et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol 2015; 16:787.
  56. Sandler HM, Hu C, Rosenthal SA, et al. A phase III protocol of androgen suppression (AS) and 3DCRT/IMRT versus AS and 3DCRT/IMRT followed by chemotherapy (CT) with docetaxel and prednisone for localized, high-risk prostate cancer (RTOG 0521). J Clin Oncol 33, 2015 (suppl; abstr LBA5002).
  57. James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016; 387:1163.
  58. Boorjian SA, Karnes RJ, Rangel LJ, et al. Mayo Clinic validation of the D'amico risk group classification for predicting survival following radical prostatectomy. J Urol 2008; 179:1354.
  59. Briganti A, Spahn M, Joniau S, et al. Impact of age and comorbidities on long-term survival of patients with high-risk prostate cancer treated with radical prostatectomy: a multi-institutional competing-risks analysis. Eur Urol 2013; 63:693.
  60. Pierorazio PM, Ross AE, Han M, et al. Evolution of the clinical presentation of men undergoing radical prostatectomy for high-risk prostate cancer. BJU Int 2012; 109:988.
  61. Scolieri MJ, Altman A, Resnick MI. Neoadjuvant hormonal ablative therapy before radical prostatectomy: a review. Is it indicated? J Urol 2000; 164:1465.
  62. Powell IJ, Tangen CM, Miller GJ, et al. Neoadjuvant therapy before radical prostatectomy for clinical T3/T4 carcinoma of the prostate: 5-year followup, Phase II Southwest Oncology Group Study 9109. J Urol 2002; 168:2016.
  63. Taplin ME, Montgomery B, Logothetis CJ, et al. Intense androgen-deprivation therapy with abiraterone acetate plus leuprolide acetate in patients with localized high-risk prostate cancer: results of a randomized phase II neoadjuvant study. J Clin Oncol 2014; 32:3705.
  64. Pietzak, E.J. & Eastham, J.A. Curr Urol Rep (2016) 17: 37. doi:10.1007/s11934-016-0592-4
  65. Rusthoven CG, Carlson JA, Waxweiler TV, et al. The impact of definitive local therapy for lymph node-positive prostate cancer: a population-based study. Int J Radiat Oncol Biol Phys 2014; 88:1064.
  66. Tran PT, Bivalacqua TJ, Dicker AP. Adjuvant radiation for node-positive disease after prostatectomy: more good news, but who will listen? J Clin Oncol 2014; 32:3917.
  67. Messing EM, Manola J, Yao J, et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol 2006; 7:472.
  68. Touijer KA, Mazzola CR, Sjoberg DD, et al. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur Urol 2014; 65:20.
  69. Gakis G, Boorjian SA, Briganti A, et al. The role of radical prostatectomy and lymph node dissection in lymph node-positive prostate cancer: a systematic review of the literature. Eur Urol 2014; 66:191.
  70. Touijer KA, Karnes RJ, Passoni N, et al. Survival Outcomes of Men with Lymph Node-positive Prostate Cancer After Radical Prostatectomy: A Comparative Analysis of Different Postoperative Management Strategies. Eur Urol 2017.
  71. Moschini M, Sharma V, Zattoni F, et al. Natural History of Clinical Recurrence Patterns of Lymph Node-Positive Prostate Cancer After Radical Prostatectomy. Eur Urol 2016; 69:135.
  72. Moschini M, Sharma V, Zattoni F, et al. Risk Stratification of pN+ Prostate Cancer after Radical Prostatectomy from a Large Single Institutional Series with Long-Term Followup. J Urol 2016; 195:1773.