UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Hypertrophic cardiomyopathy in children: Management and prognosis

Authors
John Jefferies, MD, MPH, FACC, FAHA
Thomas D Ryan, MD, PhD
Martin S Maron, MD
Section Editor
John K Triedman, MD
Deputy Editors
Brian C Downey, MD, FACC
Carrie Armsby, MD, MPH

INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is one of the most common forms of inherited cardiomyopathy in both adults and children, and it is characterized by hypertrophy of the left ventricle (LV) which sometimes involves the right ventricle. The disease course is highly variable but it is well recognized that there is an increased risk of morbidity and sudden cardiac death (SCD). (See "Sudden cardiac arrest and death in children".)

In broad terms, the symptoms related to HCM can be categorized as those related to heart failure, chest pain, or arrhythmias. Patients with HCM have an increased incidence of both supraventricular and ventricular arrhythmias and are at an increased risk for SCD. Overall, age at death has a bimodal distribution with the highest frequencies in infancy and adolescence, and the poorest survival in patients with inborn errors of metabolism and malformation syndromes diagnosed before one year of age [1]. HCM is the most common cause of SCD in young, athletic, seemingly healthy individuals, accounting for more than one-third of SCD cases [2]. (See "Hypertrophic cardiomyopathy: Prevalence, pathophysiology, and management of concurrent atrial arrhythmias" and "Hypertrophic cardiomyopathy: Assessment and management of ventricular arrhythmias and sudden cardiac death risk".)

Importantly, no medical treatments have been shown to alter disease progression. Management strategies are focused on symptom improvement, with utilization of potentially life-saving therapy in the form of implantable cardioverter defibrillators (ICDs) in patients deemed to be at high risk of SCD.

This topic will provide an overview of the management and prognosis of HCM in children. The clinical manifestations and diagnosis of HCM in children are discussed separately. (See "Hypertrophic cardiomyopathy in children: Clinical manifestations and diagnosis".)

The clinical manifestations, diagnosis, management, and natural history of HCM in adults are discussed separately:

                         

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Jul 2017. | This topic last updated: Dec 07, 2016.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
References
Top
  1. Colan SD, Lipshultz SE, Lowe AM, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation 2007; 115:773.
  2. Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation 2009; 119:1085.
  3. Nugent AW, Daubeney PE, Chondros P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 2003; 348:1639.
  4. Wilkinson JD, Lowe AM, Salbert BA, et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am Heart J 2012; 164:442.
  5. Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet 2017; 389:1253.
  6. Fifer MA, Vlahakes GJ. Management of symptoms in hypertrophic cardiomyopathy. Circulation 2008; 117:429.
  7. Spirito P, Seidman CE, McKenna WJ, Maron BJ. The management of hypertrophic cardiomyopathy. N Engl J Med 1997; 336:775.
  8. Wigle ED, Rakowski H, Kimball BP, Williams WG. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation 1995; 92:1680.
  9. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287:1308.
  10. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011; 124:2761.
  11. Ostman-Smith I, Wettrell G, Riesenfeld T. A cohort study of childhood hypertrophic cardiomyopathy: improved survival following high-dose beta-adrenoceptor antagonist treatment. J Am Coll Cardiol 1999; 34:1813.
  12. Rothman RD, Baggish AL, O'Callaghan C, et al. Management strategy in 249 consecutive patients with obstructive hypertrophic cardiomyopathy referred to a dedicated program. Am J Cardiol 2012; 110:1169.
  13. Altarabsheh SE, Dearani JA, Burkhart HM, et al. Outcome of septal myectomy for obstructive hypertrophic cardiomyopathy in children and young adults. Ann Thorac Surg 2013; 95:663.
  14. Poterucha JT, Johnson JN, O'Leary PW, et al. Surgical Ventricular Septal Myectomy for Patients With Noonan Syndrome and Symptomatic Left Ventricular Outflow Tract Obstruction. Am J Cardiol 2015; 116:1116.
  15. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L. Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1993; 22:796.
  16. Rishi F, Hulse JE, Auld DO, et al. Effects of dual-chamber pacing for pediatric patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol 1997; 29:734.
  17. Stone CD, McIntosh CL, Hennein HA, et al. Operative treatment of pediatric obstructive hypertrophic cardiomyopathy: a 26-year experience. Ann Thorac Surg 1993; 56:1308.
  18. Bharucha T, Lee KJ, Daubeney PE, et al. Sudden death in childhood cardiomyopathy: results from a long-term national population-based study. J Am Coll Cardiol 2015; 65:2302.
  19. Ziółkowska L, Turska-Kmieć A, Petryka J, Kawalec W. Predictors of Long-Term Outcome in Children with Hypertrophic Cardiomyopathy. Pediatr Cardiol 2016; 37:448.
  20. Maron BJ, Rowin EJ, Casey SA, et al. Hypertrophic Cardiomyopathy in Children, Adolescents, and Young Adults Associated With Low Cardiovascular Mortality With Contemporary Management Strategies. Circulation 2016; 133:62.
  21. O'Mahony C, Jichi F, Pavlou M, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J 2014; 35:2010.
  22. Maron BJ, McKenna WJ, Danielson GK, et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 2003; 42:1687.
  23. Ostman-Smith I, Wettrell G, Keeton B, et al. Echocardiographic and electrocardiographic identification of those children with hypertrophic cardiomyopathy who should be considered at high-risk of dying suddenly. Cardiol Young 2005; 15:632.
  24. Decker JA, Rossano JW, Smith EO, et al. Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol 2009; 54:250.
  25. DeWitt ES, Triedman JK, Cecchin F, et al. Time dependence of risks and benefits in pediatric primary prevention implantable cardioverter-defibrillator therapy. Circ Arrhythm Electrophysiol 2014; 7:1057.
  26. Maron BJ, Spirito P, Ackerman MJ, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol 2013; 61:1527.
  27. Lambiase PD, Barr C, Theuns DA, et al. Worldwide experience with a totally subcutaneous implantable defibrillator: early results from the EFFORTLESS S-ICD Registry. Eur Heart J 2014; 35:1657.
  28. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2011; 58:e212.
  29. Authors/Task Force members, Elliott PM, Anastasakis A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014; 35:2733.
  30. Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007; 116:1736.
  31. Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 3: Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Other Cardiomyopathies, and Myocarditis: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation 2015; 132:e273.
  32. https://clinicaltrials.gov/ct2/show/NCT02549664 (Accessed on December 07, 2016).
  33. Lampert R, Cannom D. Sports participation for athletes with implantable cardioverter-defibrillators should be an individualized risk-benefit decision. Heart Rhythm 2008; 5:861.
  34. Lipshultz SE, Orav EJ, Wilkinson JD, et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet 2013; 382:1889.
  35. Maskatia SA, Decker JA, Spinner JA, et al. Restrictive physiology is associated with poor outcomes in children with hypertrophic cardiomyopathy. Pediatr Cardiol 2012; 33:141.