Physical and chemical stability of gemcitabine hydrochloride solutions

J Am Pharm Assoc (Wash). 1999 Jul-Aug;39(4):509-13. doi: 10.1016/s1086-5802(16)30470-3.

Abstract

Objective: To evaluate the physical and chemical stability of gemcitabine hydrochloride (Gemzar-Eli Lilly and Company) solutions in a variety of solution concentrations, packaging, and storage conditions.

Design: Controlled experimental trial.

Setting: Laboratory.

Interventions: Test conditions included (1) reconstituted gemcitabine at a concentration of 38 mg/mL as the hydrochloride salt in 0.9% sodium chloride or sterile water for injection in the original 200 mg and 1 gram vials; (2) reconstituted gemcitabine 38 mg/mL as the hydrochloride salt in 0.9% sodium chloride injection packaged in plastic syringes; (3) diluted gemcitabine at concentrations of 0.1 and 10 mg/mL as the hydrochloride salt in polyvinyl chloride (PVC) minibags of 0.9% sodium chloride injection and 5% dextrose injection; and (4) gemcitabine 0.1, 10, and 38 mg/mL as the hydrochloride salt in 5% dextrose in water and 0.9% sodium chloride injection as simulated ambulatory infusions at 32 degrees C. Test samples of gemcitabine hydrochloride were prepared in the concentrations, solutions, and packaging required.

Main outcome measures: Physical and chemical stability based on drug concentrations initially and after 1, 3, and 7 days of storage at 32 degrees C and after 1, 7, 14, 21, and 35 days of storage at 4 degrees C and 23 degrees C.

Results: The reconstituted solutions at a gemcitabine concentration of 38 mg/mL as the hydrochloride salt in the original vials occasionally exhibited large crystal formation when stored at 4 degrees C for 14 days or more. These crystals did not redissolve upon warming to room temperature. All other samples were physically stable throughout the study. Little or no change in particulate burden or the presence of haze were found. Gemcitabine as the hydrochloride salt in the solutions tested was found to be chemically stable at all concentrations and temperatures tested that did not exhibit crystallization. Little or no loss of gemcitabine occurred in any of the samples throughout the entire study period. However, refrigerated vials that developed crystals also exhibited losses of 20% to 35% in gemcitabine content. Exposure to or protection from light did not alter the stability of gemcitabine as the hydrochloride salt in the solutions tested.

Conclusion: Reconstituted gemcitabine as the hydrochloride salt in the original vials is chemically stable at room temperature for 35 days but may develop crystals when stored at 4 degrees C. The crystals do not redissolve upon warming. Gemcitabine prepared as intravenous admixtures of 0.1 and 10 mg/mL as the hydrochloride salt in 5% dextrose injection and 0.9% sodium chloride injection in PVC bags and as a solution of 38 mg/mL in 0.9% sodium chloride injection packaged in plastic syringes is physically and chemically stable for at least 35 days at 4 degrees C and 23 degrees C. Gemcitabine as the hydrochloride salt is stable for at least 7 days at concentrations of 0.1, 10, and 38 mg/mL in 5% dextrose injection and 0.9% sodium chloride injection stored at 32 degrees C during simulated ambulatory infusion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimetabolites, Antineoplastic / chemistry*
  • Chromatography, High Pressure Liquid
  • Deoxycytidine / analogs & derivatives*
  • Deoxycytidine / chemistry
  • Drug Stability
  • Gemcitabine
  • Pharmaceutical Vehicles / chemistry*
  • Product Packaging
  • Time Factors

Substances

  • Antimetabolites, Antineoplastic
  • Pharmaceutical Vehicles
  • Deoxycytidine
  • Gemcitabine