Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Fever without a source in children 3 to 36 months of age

Coburn H Allen, MD
Section Editors
Gary R Fleisher, MD
Sheldon L Kaplan, MD
Deputy Editor
James F Wiley, II, MD, MPH


This topic will review the etiology, evaluation, and management of the otherwise healthy child 3 to 36 months of age with fever of less than 7 days duration. Fever in newborns, infants younger than 3 months, fever in immunocompromised patients, and fever of unknown origin (≥7 days) are reviewed separately:

(See "Clinical features, evaluation, and diagnosis of sepsis in term and late preterm infants" and "Management of the infant whose mother has received group B streptococcal chemoprophylaxis".)

(See "Febrile infant (younger than 90 days of age): Outpatient evaluation".)

(See "Fever in children with chemotherapy-induced neutropenia" and "Evaluation and management of fever in children with non-chemotherapy-induced neutropenia".)

(See "Management of fever in sickle cell disease".)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Nov 07, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Baraff LJ, Bass JW, Fleisher GR, et al. Practice guideline for the management of infants and children 0 to 36 months of age with fever without source. Agency for Health Care Policy and Research. Ann Emerg Med 1993; 22:1198.
  2. Finkelstein JA, Christiansen CL, Platt R. Fever in pediatric primary care: occurrence, management, and outcomes. Pediatrics 2000; 105:260.
  3. Nelson DS, Walsh K, Fleisher GR. Spectrum and frequency of pediatric illness presenting to a general community hospital emergency department. Pediatrics 1992; 90:5.
  4. Krauss BS, Harakal T, Fleisher GR. The spectrum and frequency of illness presenting to a pediatric emergency department. Pediatr Emerg Care 1991; 7:67.
  5. Lee GM, Harper MB. Risk of bacteremia for febrile young children in the post-Haemophilus influenzae type b era. Arch Pediatr Adolesc Med 1998; 152:624.
  6. Kuppermann N, Fleisher GR, Jaffe DM. Predictors of occult pneumococcal bacteremia in young febrile children. Ann Emerg Med 1998; 31:679.
  7. De S, Williams GJ, Teixeira-Pinto A, et al. Lack of Accuracy of Body Temperature for Detecting Serious Bacterial Infection in Febrile Episodes. Pediatr Infect Dis J 2015; 34:940.
  8. McGowan JE Jr, Bratton L, Klein JO, Finland M. Bacteremia in febrile children seen in a "walk-in" pediatric clinic. N Engl J Med 1973; 288:1309.
  9. Teele DW, Pelton SI, Grant MJ, et al. Bacteremia in febrile children under 2 years of age: results of cultures of blood of 600 consecutive febrile children seen in a "walk-in" clinic. J Pediatr 1975; 87:227.
  10. Shapiro ED, Aaron NH, Wald ER, Chiponis D. Risk factors for development of bacterial meningitis among children with occult bacteremia. J Pediatr 1986; 109:15.
  11. Baraff LJ, Oslund S, Prather M. Effect of antibiotic therapy and etiologic microorganism on the risk of bacterial meningitis in children with occult bacteremia. Pediatrics 1993; 92:140.
  12. Greenes DS, Harper MB. Low risk of bacteremia in febrile children with recognizable viral syndromes. Pediatr Infect Dis J 1999; 18:258.
  13. McCarthy PL. Acute infectious illness in children. Compr Ther 1988; 14:51.
  14. Tighe M, Roe MF. Does a teething child need serious illness excluding? Arch Dis Child 2007; 92:266.
  15. Wright PF, Thompson J, McKee KT Jr, et al. Patterns of illness in the highly febrile young child: epidemiologic, clinical, and laboratory correlates. Pediatrics 1981; 67:694.
  16. Leventhal JM. Clinical predictors of pneumonia as a guide to ordering chest roentgenograms. Clin Pediatr (Phila) 1982; 21:730.
  17. Zukin DD, Hoffman JR, Cleveland RH, et al. Correlation of pulmonary signs and symptoms with chest radiographs in the pediatric age group. Ann Emerg Med 1986; 15:792.
  18. Craig JC, Williams GJ, Jones M, et al. The accuracy of clinical symptoms and signs for the diagnosis of serious bacterial infection in young febrile children: prospective cohort study of 15 781 febrile illnesses. BMJ 2010; 340:c1594.
  19. Nijman RG, Vergouwe Y, Thompson M, et al. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: diagnostic study. BMJ 2013; 346:f1706.
  20. Bachur R, Perry H, Harper MB. Occult pneumonias: empiric chest radiographs in febrile children with leukocytosis. Ann Emerg Med 1999; 33:166.
  21. Brauner M, Goldman M, Kozer E. Extreme leucocytosis and the risk of serious bacterial infections in febrile children. Arch Dis Child 2010; 95:209.
  22. Rutman MS, Bachur R, Harper MB. Radiographic pneumonia in young, highly febrile children with leukocytosis before and after universal conjugate pneumococcal vaccination. Pediatr Emerg Care 2009; 25:1.
  23. Shaw KN, Gorelick M, McGowan KL, et al. Prevalence of urinary tract infection in febrile young children in the emergency department. Pediatrics 1998; 102:e16.
  24. Hoberman A, Chao HP, Keller DM, et al. Prevalence of urinary tract infection in febrile infants. J Pediatr 1993; 123:17.
  25. Shaikh N, Morone NE, Lopez J, et al. Does this child have a urinary tract infection? JAMA 2007; 298:2895.
  26. Greenhow TL, Hung YY, Herz A. Bacteremia in Children 3 to 36 Months Old After Introduction of Conjugated Pneumococcal Vaccines. Pediatrics 2017; 139.
  27. Carroll WL, Farrell MK, Singer JI, et al. Treatment of occult bacteremia: a prospective randomized clinical trial. Pediatrics 1983; 72:608.
  28. Jaffe DM, Tanz RR, Davis AT, et al. Antibiotic administration to treat possible occult bacteremia in febrile children. N Engl J Med 1987; 317:1175.
  29. Bass JW, Steele RW, Wittler RR, et al. Antimicrobial treatment of occult bacteremia: a multicenter cooperative study. Pediatr Infect Dis J 1993; 12:466.
  30. Yamamoto LT, Wigder HN, Fligner DJ, et al. Relationship of bacteremia to antipyretic therapy in febrile children. Pediatr Emerg Care 1987; 3:223.
  31. Baker RC, Tiller T, Bausher JC, et al. Severity of disease correlated with fever reduction in febrile infants. Pediatrics 1989; 83:1016.
  32. Teach SJ, Fleisher GR. Efficacy of an observation scale in detecting bacteremia in febrile children three to thirty-six months of age, treated as outpatients. Occult Bacteremia Study Group. J Pediatr 1995; 126:877.
  33. Bratton L, Teele DW, Klein JO. Outcome of unsuspected pneumococcemia in children not initially admitted to the hospital. J Pediatr 1977; 90:703.
  34. Fleisher GR, Rosenberg N, Vinci R, et al. Intramuscular versus oral antibiotic therapy for the prevention of meningitis and other bacterial sequelae in young, febrile children at risk for occult bacteremia. J Pediatr 1994; 124:504.
  35. Stoll ML, Rubin LG. Incidence of occult bacteremia among highly febrile young children in the era of the pneumococcal conjugate vaccine: a study from a Children's Hospital Emergency Department and Urgent Care Center. Arch Pediatr Adolesc Med 2004; 158:671.
  36. Sard B, Bailey MC, Vinci R. An analysis of pediatric blood cultures in the postpneumococcal conjugate vaccine era in a community hospital emergency department. Pediatr Emerg Care 2006; 22:295.
  37. Herz AM, Greenhow TL, Alcantara J, et al. Changing epidemiology of outpatient bacteremia in 3- to 36-month-old children after the introduction of the heptavalent-conjugated pneumococcal vaccine. Pediatr Infect Dis J 2006; 25:293.
  38. Carstairs KL, Tanen DA, Johnson AS, et al. Pneumococcal bacteremia in febrile infants presenting to the emergency department before and after the introduction of the heptavalent pneumococcal vaccine. Ann Emerg Med 2007; 49:772.
  39. Waddle E, Jhaveri R. Outcomes of febrile children without localising signs after pneumococcal conjugate vaccine. Arch Dis Child 2009; 94:144.
  40. Wilkinson M, Bulloch B, Smith M. Prevalence of occult bacteremia in children aged 3 to 36 months presenting to the emergency department with fever in the postpneumococcal conjugate vaccine era. Acad Emerg Med 2009; 16:220.
  41. Benito-Fernández J, Mintegi S, Pocheville-Gurutzeta I, et al. Pneumococcal bacteremia in febrile infants presenting to the emergency department 8 years after the introduction of pneumococcal conjugate vaccine in the Basque Country of Spain. Pediatr Infect Dis J 2010; 29:1142.
  42. Bressan S, Berlese P, Mion T, et al. Bacteremia in feverish children presenting to the emergency department: a retrospective study and literature review. Acta Paediatr 2012; 101:271.
  43. Irwin AD, Drew RJ, Marshall P, et al. Etiology of childhood bacteremia and timely antibiotics administration in the emergency department. Pediatrics 2015; 135:635.
  44. Kuppermann N, Malley R, Inkelis SH, Fleisher GR. Clinical and hematologic features do not reliably identify children with unsuspected meningococcal disease. Pediatrics 1999; 103:E20.
  45. Nigrovic, LE, Malley, R. Evaluation of the febrile child 3 to 36 months old in the era of pneumococcal conjugate vaccine: focus on occult bacteremia. Clin Ped Emerg Med 2004; 5:13.
  46. Jhaveri R, Byington CL, Klein JO, Shapiro ED. Management of the non-toxic-appearing acutely febrile child: a 21st century approach. J Pediatr 2011; 159:181.
  47. Lee GM, Fleisher GR, Harper MB. Management of febrile children in the age of the conjugate pneumococcal vaccine: a cost-effectiveness analysis. Pediatrics 2001; 108:835.
  48. Teach SJ, Fleisher GR. Duration of fever and its relationship to bacteremia in febrile outpatients three to 36 months old. The Occult Bacteremia Study Group. Pediatr Emerg Care 1997; 13:317.
  49. Isaacman DJ, Shults J, Gross TK, et al. Predictors of bacteremia in febrile children 3 to 36 months of age. Pediatrics 2000; 106:977.
  50. Peltola V, Mertsola J, Ruuskanen O. Comparison of total white blood cell count and serum C-reactive protein levels in confirmed bacterial and viral infections. J Pediatr 2006; 149:721.
  51. Huicho L, Campos-Sanchez M, Alamo C. Metaanalysis of urine screening tests for determining the risk of urinary tract infection in children. Pediatr Infect Dis J 2002; 21:1.
  52. Gorelick MH, Shaw KN. Screening tests for urinary tract infection in children: A meta-analysis. Pediatrics 1999; 104:e54.
  53. Kanegaye JT, Jacob JM, Malicki D. Automated urinalysis and urine dipstick in the emergency evaluation of young febrile children. Pediatrics 2014; 134:523.
  54. Alpern ER, Alessandrini EA, Bell LM, et al. Occult bacteremia from a pediatric emergency department: current prevalence, time to detection, and outcome. Pediatrics 2000; 106:505.
  55. Gilsdorf JR. C reactive protein and procalcitonin are helpful in diagnosis of serious bacterial infections in children. J Pediatr 2011; 160:173.
  56. Pulliam PN, Attia MW, Cronan KM. C-reactive protein in febrile children 1 to 36 months of age with clinically undetectable serious bacterial infection. Pediatrics 2001; 108:1275.
  57. Isaacman DJ, Burke BL. Utility of the serum C-reactive protein for detection of occult bacterial infection in children. Arch Pediatr Adolesc Med 2002; 156:905.
  58. Peltola H, Jaakkola M. C-reactive protein in early detection of bacteremic versus viral infections in immunocompetent and compromised children. J Pediatr 1988; 113:641.
  59. Fernández Lopez A, Luaces Cubells C, García García JJ, et al. Procalcitonin in pediatric emergency departments for the early diagnosis of invasive bacterial infections in febrile infants: results of a multicenter study and utility of a rapid qualitative test for this marker. Pediatr Infect Dis J 2003; 22:895.
  60. Lacour AG, Zamora SA, Gervaix A. A score identifying serious bacterial infections in children with fever without source. Pediatr Infect Dis J 2008; 27:654.
  61. van Rossum AM, Wulkan RW, Oudesluys-Murphy AM. Procalcitonin as an early marker of infection in neonates and children. Lancet Infect Dis 2004; 4:620.
  62. Hsiao AL, Baker MD. Fever in the new millennium: a review of recent studies of markers of serious bacterial infection in febrile children. Curr Opin Pediatr 2005; 17:56.
  63. Galetto-Lacour A, Zamora SA, Gervaix A. Bedside procalcitonin and C-reactive protein tests in children with fever without localizing signs of infection seen in a referral center. Pediatrics 2003; 112:1054.
  64. Andreola B, Bressan S, Callegaro S, et al. Procalcitonin and C-reactive protein as diagnostic markers of severe bacterial infections in febrile infants and children in the emergency department. Pediatr Infect Dis J 2007; 26:672.
  65. Dubos F, Korczowski B, Aygun DA, et al. Serum procalcitonin level and other biological markers to distinguish between bacterial and aseptic meningitis in children: a European multicenter case cohort study. Arch Pediatr Adolesc Med 2008; 162:1157.
  66. Van den Bruel A, Thompson MJ, Haj-Hassan T, et al. Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ 2011; 342:d3082.
  67. Oved K, Cohen A, Boico O, et al. A novel host-proteome signature for distinguishing between acute bacterial and viral infections. PLoS One 2015; 10:e0120012.
  68. Srugo I, Klein A, Stein M, et al. Validation of a Novel Assay to Distinguish Bacterial and Viral Infections. Pediatrics 2017; 140.
  69. Baraff LJ. Management of fever without source in infants and children. Ann Emerg Med 2000; 36:602.
  70. Bachur R, Harper MB. Reevaluation of outpatients with Streptococcus pneumoniae bacteremia. Pediatrics 2000; 105:502.
  71. Downs SM, McNutt RA, Margolis PA. Management of infants at risk for occult bacteremia: a decision analysis. J Pediatr 1991; 118:11.
  72. Lieu TA, Schwartz JS, Jaffe DM, Fleisher GR. Strategies for diagnosis and treatment of children at risk for occult bacteremia: clinical effectiveness and cost-effectiveness. J Pediatr 1991; 118:21.
  73. Bulloch B, Craig WR, Klassen TP. The use of antibiotics to prevent serious sequelae in children at risk for occult bacteremia: a meta-analysis. Acad Emerg Med 1997; 4:679.
  74. Avner JR, Baker MD. Occult bacteremia in the post-pneumococcal conjugate vaccine era: does the blood culture stop here? Acad Emerg Med 2009; 16:258.
  75. Simon AE, Lukacs SL, Mendola P. Emergency department laboratory evaluations of fever without source in children aged 3 to 36 months. Pediatrics 2011; 128:e1368.