Etiology of hypocalcemia in adults
Etiology of hypocalcemia in adults
Author:
David Goltzman, MD
Section Editor:
Clifford J Rosen, MD
Deputy Editor:
Jean E Mulder, MD
Literature review current through: Mar 2024.
This topic last updated: Nov 17, 2023.

INTRODUCTION

The major factors that influence the serum calcium concentration are parathyroid hormone (PTH), vitamin D, fibroblast growth factor 23 (FGF23), the calcium ion itself [1,2], and phosphate. Low serum calcium concentrations are most often caused by disorders of PTH or vitamin D. Other causes of hypocalcemia include disorders that result in a decrease in serum ionized calcium concentration by binding of calcium within the vascular space or by its deposition in tissues, as can occur with hyperphosphatemia.

The causes of hypocalcemia in adults will be reviewed here. The etiology of hypocalcemia in neonates and children and the clinical manifestations, evaluation, and treatment of hypocalcemia in adults are discussed elsewhere. (See "Etiology of hypocalcemia in infants and children" and "Clinical manifestations of hypocalcemia" and "Diagnostic approach to hypocalcemia" and "Treatment of hypocalcemia".)

CALCIUM HOMEOSTASIS

Serum calcium concentrations are normally maintained within the very narrow range that is required for the optimal activity of the many extra- and intracellular processes calcium regulates. Calcium in the blood is transported partly bound to plasma proteins (approximately 40 to 45 percent), notably albumin; partly bound to small anions such as phosphate and citrate (approximately 15 percent); and partly in the free or ionized state (approximately 40 to 45 percent). (See "Relation between total and ionized serum calcium concentrations".)

Although only the ionized calcium is metabolically active (ie, subject to transport into cells), most laboratories report total serum calcium concentrations. Concentrations of total calcium in normal serum generally range between 8.5 and 10.5 mg/dL (2.12 to 2.62 mmol/L), and levels below this are considered to be consistent with hypocalcemia. The normal range of ionized calcium is 4.65 to 5.25 mg/dL (1.16 to 1.31 mmol/L).

Hypoalbuminemia — When protein concentrations (particularly albumin) fluctuate substantially, total calcium levels may vary, whereas the ionized calcium (whose level is hormonally regulated) remains relatively stable. Thus, total serum calcium concentrations may not accurately reflect the physiologically important ionized (or free) calcium concentration. As an example, in volume overload, chronic illness, and malnutrition or nephrotic syndrome (where serum protein can be reduced), total plasma calcium is low but the ionized calcium is normal. This phenomenon is called pseudohypocalcemia.

Disclaimer: This generalized information is a limited summary of diagnosis, treatment, and/or medication information. It is not meant to be comprehensive and should be used as a tool to help the user understand and/or assess potential diagnostic and treatment options. It does NOT include all information about conditions, treatments, medications, side effects, or risks that may apply to a specific patient. It is not intended to be medical advice or a substitute for the medical advice, diagnosis, or treatment of a health care provider based on the health care provider's examination and assessment of a patient's specific and unique circumstances. Patients must speak with a health care provider for complete information about their health, medical questions, and treatment options, including any risks or benefits regarding use of medications. This information does not endorse any treatments or medications as safe, effective, or approved for treating a specific patient. UpToDate, Inc. and its affiliates disclaim any warranty or liability relating to this information or the use thereof. The use of this information is governed by the Terms of Use, available at https://www.wolterskluwer.com/en/know/clinical-effectiveness-terms. 2024© UpToDate, Inc. and its affiliates and/or licensors. All rights reserved.
Loading
Please wait