Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Arrhythmia-induced cardiomyopathy

Cynthia M Tracy, MD
Section Editor
William J McKenna, MD
Deputy Editor
Brian C Downey, MD, FACC


Cardiomyopathies are diseases of the heart muscle, inclusive of a variety of myocardial disorders that manifest with various structural and functional phenotypes and are frequently genetic. Although some have defined cardiomyopathy to include myocardial disease caused by known cardiovascular causes (such as hypertension, ischemic heart disease, or valvular disease), current major society definitions of cardiomyopathy exclude heart disease secondary to such cardiovascular disorders [1,2]. (See "Definition and classification of the cardiomyopathies" and "Causes of dilated cardiomyopathy".)

The prognosis in patients with dilated cardiomyopathy is variable and dependent on the cause; importantly, there are some etiologies that may improve or resolve following treatment. One such cause is an arrhythmia-induced cardiomyopathy (also known as tachycardia-induced cardiomyopathy, tachycardia-mediated cardiomyopathy, and tachymyopathy), a relatively rare though well-recognized entity caused by long-standing tachycardia, which in most instances is readily treatable with a good prognosis [3]. Arrhythmia-induced cardiomyopathy has been reported with nearly all types of tachyarrhythmias and frequent ectopy, both supraventricular and ventricular [4].

A common clinical problem is determining whether the tachycardia is the primary cause of the patient's cardiomyopathy, or if the tachycardia is secondary to a cardiomyopathy of different etiology. This topic will discuss arrhythmia-induced cardiomyopathy as a primary cause of cardiomyopathy. Arrhythmias occurring in the setting of a specific cardiomyopathy are discussed separately. (See "Hypertrophic cardiomyopathy: Prevalence, pathophysiology, and management of concurrent atrial arrhythmias" and "Hypertrophic cardiomyopathy: Assessment and management of ventricular arrhythmias and sudden cardiac death risk" and "Arrhythmogenic right ventricular cardiomyopathy: Anatomy, histology, and clinical manifestations", section on 'Ventricular arrhythmias'.)


While the exact incidence of arrhythmia-induced cardiomyopathy remains unclear, an association between tachycardia and cardiomyopathy has been recognized for some time [5-8]. Virtually every form of supraventricular tachyarrhythmia, including ectopic atrial tachycardia, nonparoxysmal junctional tachycardia, and atrial fibrillation (AF), has been associated with reversible left ventricular dysfunction or "cardiomyopathy." The development of a cardiomyopathy has also been documented with ventricular tachyarrhythmias and frequent ectopic beats [9-11]. (See "Hemodynamic consequences of atrial fibrillation and cardioversion to sinus rhythm" and 'Frequent ectopic beats' below.)

Some insight into the prevalence of arrhythmia-induced cardiomyopathy can be derived from cohort studies of patients undergoing catheter ablation for symptomatic arrhythmias. As examples:

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: May 05, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113:1807.
  2. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008; 29:2388.
  3. Shinbane JS, Wood MA, Jensen DN, et al. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 1997; 29:709.
  4. Gopinathannair R, Etheridge SP, Marchlinski FE, et al. Arrhythmia-Induced Cardiomyopathies: Mechanisms, Recognition, and Management. J Am Coll Cardiol 2015; 66:1714.
  5. Kasper EK, Agema WR, Hutchins GM, et al. The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J Am Coll Cardiol 1994; 23:586.
  6. SHACHNOW N, SPELLMAN S, RUBIN I. Persistent supraventricular tachycardia; case report with review of literature. Circulation 1954; 10:232.
  7. Engel TR, Bush CA, Schaal SF. Tachycardia-aggravated heart disease. Ann Intern Med 1974; 80:384.
  8. Coleman HN 3rd, Taylor RR, Pool PE, et al. Congestive heart failure following chronic tachycardia. Am Heart J 1971; 81:790.
  9. Vijgen J, Hill P, Biblo LA, Carlson MD. Tachycardia-induced cardiomyopathy secondary to right ventricular outflow tract ventricular tachycardia: improvement of left ventricular systolic function after radiofrequency catheter ablation of the arrhythmia. J Cardiovasc Electrophysiol 1997; 8:445.
  10. Singh B, Kaul U, Talwar KK, Wasir HS. Reversibility of "tachycardia induced cardiomyopathy" following the cure of idiopathic left ventricular tachycardia using radiofrequency energy. Pacing Clin Electrophysiol 1996; 19:1391.
  11. Baman TS, Lange DC, Ilg KJ, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm 2010; 7:865.
  12. Medi C, Kalman JM, Haqqani H, et al. Tachycardia-mediated cardiomyopathy secondary to focal atrial tachycardia: long-term outcome after catheter ablation. J Am Coll Cardiol 2009; 53:1791.
  13. Donghua Z, Jian P, Zhongbo X, et al. Reversal of cardiomyopathy in patients with congestive heart failure secondary to tachycardia. J Interv Card Electrophysiol 2013; 36:27.
  14. Spinale FG, Hendrick DA, Crawford FA, et al. Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol 1990; 259:H218.
  15. Howard RJ, Stopps TP, Moe GW, et al. Recovery from heart failure: structural and functional analysis in a canine model. Can J Physiol Pharmacol 1988; 66:1505.
  16. Morgan DE, Tomlinson CW, Qayumi AK, et al. Evaluation of ventricular contractility indexes in the dog with left ventricular dysfunction induced by rapid atrial pacing. J Am Coll Cardiol 1989; 14:489.
  17. Spinale FG, Tomita M, Zellner JL, et al. Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol 1991; 261:H308.
  18. Kajstura J, Zhang X, Liu Y, et al. The cellular basis of pacing-induced dilated cardiomyopathy. Myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation 1995; 92:2306.
  19. O'Brien PJ, Ianuzzo CD, Moe GW, et al. Rapid ventricular pacing of dogs to heart failure: biochemical and physiological studies. Can J Physiol Pharmacol 1990; 68:34.
  20. Ohno M, Cheng CP, Little WC. Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 1994; 89:2241.
  21. Armstrong PW, Stopps TP, Ford SE, de Bold AJ. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 1986; 74:1075.
  22. Wilson JR, Douglas P, Hickey WF, et al. Experimental congestive heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulation 1987; 75:857.
  23. Damiano RJ Jr, Tripp HF Jr, Asano T, et al. Left ventricular dysfunction and dilatation resulting from chronic supraventricular tachycardia. J Thorac Cardiovasc Surg 1987; 94:135.
  24. Yamamoto K, Burnett JC Jr, Meyer LM, et al. Ventricular remodeling during development and recovery from modified tachycardia-induced cardiomyopathy model. Am J Physiol 1996; 271:R1529.
  25. Huizar JF, Kaszala K, Potfay J, et al. Left ventricular systolic dysfunction induced by ventricular ectopy: a novel model for premature ventricular contraction-induced cardiomyopathy. Circ Arrhythm Electrophysiol 2011; 4:543.
  26. Pak PH, Nuss HB, Tunin RS, et al. Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J Am Coll Cardiol 1997; 30:576.
  27. Moe GW, Montgomery C, Howard RJ, et al. Left ventricular myocardial blood flow, metabolism, and effects of treatment with enalapril: further insights into the mechanisms of canine experimental pacing-induced heart failure. J Lab Clin Med 1993; 121:294.
  28. Spinale FG, Holzgrefe HH, Mukherjee R, et al. LV and myocyte structure and function after early recovery from tachycardia-induced cardiomyopathy. Am J Physiol 1995; 268:H836.
  29. Spinale FG, Clayton C, Tanaka R, et al. Myocardial Na+,K(+)-ATPase in tachycardia induced cardiomyopathy. J Mol Cell Cardiol 1992; 24:277.
  30. Kloner RA, DeBoer LW, Darsee JR, et al. Recovery from prolonged abnormalities of canine myocardium salvaged from ischemic necrosis by coronary reperfusion. Proc Natl Acad Sci U S A 1981; 78:7152.
  31. Reimer KA, Hill ML, Jennings RB. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 1981; 13:229.
  32. Spinale FG, Tanaka R, Crawford FA, Zile MR. Changes in myocardial blood flow during development of and recovery from tachycardia-induced cardiomyopathy. Circulation 1992; 85:717.
  33. Shannon RP, Komamura K, Shen YT, et al. Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am J Physiol 1993; 265:H801.
  34. Perreault CL, Shannon RP, Komamura K, et al. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure. J Clin Invest 1992; 89:932.
  35. Tanaka R, Fulbright BM, Mukherjee R, et al. The cellular basis for the blunted response to beta-adrenergic stimulation in supraventricular tachycardia-induced cardiomyopathy. J Mol Cell Cardiol 1993; 25:1215.
  36. Sasayama S, Asanoi H, Ishizaka S. Continuous measurement of the pressure-volume relationship in experimental heart failure produced by rapid ventricular pacing in conscious dogs. Eur Heart J 1992; 13 Suppl E:47.
  37. Selby DE, Palmer BM, LeWinter MM, Meyer M. Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol 2011; 58:147.
  38. Marzo KP, Frey MJ, Wilson JR, et al. Beta-adrenergic receptor-G protein-adenylate cyclase complex in experimental canine congestive heart failure produced by rapid ventricular pacing. Circ Res 1991; 69:1546.
  39. Wakili R, Yeh YH, Yan Qi X, et al. Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs. Circ Arrhythm Electrophysiol 2010; 3:530.
  40. Yonemochi H, Yasunaga S, Teshima Y, et al. Rapid electrical stimulation of contraction reduces the density of beta-adrenergic receptors and responsiveness of cultured neonatal rat cardiomyocytes. Possible involvement of microtubule disassembly secondary to mechanical stress. Circulation 2000; 101:2625.
  41. Mihm MJ, Yu F, Carnes CA, et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 2001; 104:174.
  42. Shite J, Qin F, Mao W, et al. Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy. J Am Coll Cardiol 2001; 38:1734.
  43. Deshmukh PM, Krishnamani R, Romanyshyn M, et al. Association of angiotensin converting enzyme gene polymorphism with tachycardia cardiomyopathy. Int J Mol Med 2004; 13:455.
  44. Chiladakis JA, Vassilikos VP, Maounis TN, et al. Successful radiofrequency catheter ablation of automatic atrial tachycardia with regression of the cardiomyopathy picture. Pacing Clin Electrophysiol 1997; 20:953.
  45. Gillette PC, Smith RT, Garson A Jr, et al. Chronic supraventricular tachycardia. A curable cause of congestive cardiomyopathy. JAMA 1985; 253:391.
  46. Gallagher JJ. Tachycardia and cardiomyopathy: the chicken-egg dilemma revisited. J Am Coll Cardiol 1985; 6:1172.
  47. Bertil Olsson S, Blomström P, Sabel KG, William-Olsson G. Incessant ectopic atrial tachycardia: successful surgical treatment with regression of dilated cardiomyopathy picture. Am J Cardiol 1984; 53:1465.
  48. Packer DL, Bardy GH, Worley SJ, et al. Tachycardia-induced cardiomyopathy: a reversible form of left ventricular dysfunction. Am J Cardiol 1986; 57:563.
  49. Rao PS, Najjar HN. Congestive cardiomyopathy due to chronic tachycardia: resolution of cardiomyopathy with antiarrhythmic drugs. Int J Cardiol 1987; 17:216.
  50. Gillette PC, Wampler DG, Garson A Jr, et al. Treatment of atrial automatic tachycardia by ablation procedures. J Am Coll Cardiol 1985; 6:405.
  51. Sanders P, Morton JB, Kistler PM, et al. Reversal of atrial mechanical dysfunction after cardioversion of atrial fibrillation: implications for the mechanisms of tachycardia-mediated atrial cardiomyopathy. Circulation 2003; 108:1976.
  52. Fishberger SB, Colan SD, Saul JP, et al. Myocardial mechanics before and after ablation of chronic tachycardia. Pacing Clin Electrophysiol 1996; 19:42.
  53. Aguinaga L, Primo J, Anguera I, et al. Long-term follow-up in patients with the permanent form of junctional reciprocating tachycardia treated with radiofrequency ablation. Pacing Clin Electrophysiol 1998; 21:2073.
  54. Leman RB, Gillette PC, Zinner AJ. Resolution of congestive cardiomyopathy caused by supraventricular tachycardia using amiodarone. Am Heart J 1986; 112:622.
  55. Corey WA, Markel ML, Hoit BD, Walsh RA. Regression of a dilated cardiomyopathy after radiofrequency ablation of incessant supraventricular tachycardia. Am Heart J 1993; 126:1469.
  56. Grimm W, Menz V, Hoffmann J, Maisch B. Reversal of tachycardia induced cardiomyopathy following ablation of repetitive monomorphic right ventricular outflow tract tachycardia. Pacing Clin Electrophysiol 2001; 24:166.
  57. Yarlagadda RK, Iwai S, Stein KM, et al. Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation 2005; 112:1092.
  58. Nerheim P, Birger-Botkin S, Piracha L, Olshansky B. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation 2004; 110:247.
  59. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med 2002; 113:359.
  60. Luchsinger JA, Steinberg JS. Resolution of cardiomyopathy after ablation of atrial flutter. J Am Coll Cardiol 1998; 32:205.
  61. Redfield MM, Kay GN, Jenkins LS, et al. Tachycardia-related cardiomyopathy: a common cause of ventricular dysfunction in patients with atrial fibrillation referred for atrioventricular ablation. Mayo Clin Proc 2000; 75:790.
  62. Edner M, Caidahl K, Bergfeldt L, et al. Prospective study of left ventricular function after radiofrequency ablation of atrioventricular junction in patients with atrial fibrillation. Br Heart J 1995; 74:261.
  63. Pizzale S, Lemery R, Green MS, et al. Frequency and predictors of tachycardia-induced cardiomyopathy in patients with persistent atrial flutter. Can J Cardiol 2009; 25:469.
  64. Hasdemir C, Ulucan C, Yavuzgil O, et al. Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics, and the predictors. J Cardiovasc Electrophysiol 2011; 22:663.
  65. Bogun F, Crawford T, Reich S, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm 2007; 4:863.
  66. Yokokawa M, Kim HM, Good E, et al. Relation of symptoms and symptom duration to premature ventricular complex-induced cardiomyopathy. Heart Rhythm 2012; 9:92.
  67. Mountantonakis SE, Frankel DS, Gerstenfeld EP, et al. Reversal of outflow tract ventricular premature depolarization-induced cardiomyopathy with ablation: effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome. Heart Rhythm 2011; 8:1608.
  68. Penela D, Van Huls Van Taxis C, Aguinaga L, et al. Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: a prospective multicenter study. J Am Coll Cardiol 2013; 62:1195.
  69. El Kadri M, Yokokawa M, Labounty T, et al. Effect of ablation of frequent premature ventricular complexes on left ventricular function in patients with nonischemic cardiomyopathy. Heart Rhythm 2015; 12:706.
  70. Baser K, Bas HD, LaBounty T, et al. Recurrence of PVCs in patients with PVC-induced cardiomyopathy. Heart Rhythm 2015; 12:1519.
  71. Penela D, Acosta J, Aguinaga L, et al. Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Heart Rhythm 2015; 12:2434.
  72. Laplante L, Benzaquen BS. A Review of the Potential Pathogenicity and Management of Frequent Premature Ventricular Contractions. Pacing Clin Electrophysiol 2016; 39:723.
  73. Lamba J, Redfearn DP, Michael KA, et al. Radiofrequency catheter ablation for the treatment of idiopathic premature ventricular contractions originating from the right ventricular outflow tract: a systematic review and meta-analysis. Pacing Clin Electrophysiol 2014; 37:73.
  74. Yokokawa M, Kim HM, Good E, et al. Impact of QRS duration of frequent premature ventricular complexes on the development of cardiomyopathy. Heart Rhythm 2012; 9:1460.
  75. Carballeira Pol L, Deyell MW, Frankel DS, et al. Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Heart Rhythm 2014; 11:299.
  76. Deyell MW, Park KM, Han Y, et al. Predictors of recovery of left ventricular dysfunction after ablation of frequent ventricular premature depolarizations. Heart Rhythm 2012; 9:1465.
  77. Yokokawa M, Good E, Crawford T, et al. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart Rhythm 2013; 10:172.
  78. Pacchia CF, Akoum NW, Wasmund S, Hamdan MH. Atrial bigeminy results in decreased left ventricular function: an insight into the mechanism of PVC-induced cardiomyopathy. Pacing Clin Electrophysiol 2012; 35:1232.
  79. Hasdemir C, Simsek E, Yuksel A. Premature atrial contraction-induced cardiomyopathy. Europace 2013; 15:1790.
  80. Heart Failure Society Of America . Evaluation of patients for ventricular dysfunction and heart failure. J Card Fail 2006; 12:e16.
  81. Arnold JM, Liu P, Demers C, et al. Canadian Cardiovascular Society consensus conference recommendations on heart failure 2006: diagnosis and management. Can J Cardiol 2006; 22:23.
  82. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62:e147.
  83. Sakaguchi H, Miyazaki A, Yamamoto M, et al. Clinical characteristics of focal atrial tachycardias arising from the atrial appendages during childhood. Pacing Clin Electrophysiol 2011; 34:177.
  84. Jeong YH, Choi KJ, Song JM, et al. Diagnostic approach and treatment strategy in tachycardia-induced cardiomyopathy. Clin Cardiol 2008; 31:172.
  85. Ling LH, Kalman JM, Ellims AH, et al. Diffuse ventricular fibrosis is a late outcome of tachycardia-mediated cardiomyopathy after successful ablation. Circ Arrhythm Electrophysiol 2013; 6:697.
  86. Hasdemir C, Yuksel A, Camli D, et al. Late gadolinium enhancement CMR in patients with tachycardia-induced cardiomyopathy caused by idiopathic ventricular arrhythmias. Pacing Clin Electrophysiol 2012; 35:465.
  87. Grogan M, Smith HC, Gersh BJ, Wood DL. Left ventricular dysfunction due to atrial fibrillation in patients initially believed to have idiopathic dilated cardiomyopathy. Am J Cardiol 1992; 69:1570.
  88. Gentlesk PJ, Sauer WH, Gerstenfeld EP, et al. Reversal of left ventricular dysfunction following ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2007; 18:9.
  89. Manolis AG, Katsivas AG, Lazaris EE, et al. Ventricular performance and quality of life in patients who underwent radiofrequency AV junction ablation and permanent pacemaker implantation due to medically refractory atrial tachyarrhythmias. J Interv Card Electrophysiol 1998; 2:71.
  90. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002; 347:1825.
  91. Van Gelder IC, Hagens VE, Bosker HA, et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 2002; 347:1834.
  92. Corley SD, Epstein AE, DiMarco JP, et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation 2004; 109:1509.
  93. Opolski G, Torbicki A, Kosior DA, et al. Rate control vs rhythm control in patients with nonvalvular persistent atrial fibrillation: the results of the Polish How to Treat Chronic Atrial Fibrillation (HOT CAFE) Study. Chest 2004; 126:476.
  94. Carlsson J, Miketic S, Windeler J, et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the Strategies of Treatment of Atrial Fibrillation (STAF) study. J Am Coll Cardiol 2003; 41:1690.
  95. Al-Khatib SM, Shaw LK, Lee KL, et al. Is rhythm control superior to rate control in patients with atrial fibrillation and congestive heart failure? Am J Cardiol 2004; 94:797.
  96. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 2008; 358:2667.
  97. Anter E, Jessup M, Callans DJ. Atrial fibrillation and heart failure: treatment considerations for a dual epidemic. Circulation 2009; 119:2516.
  98. Eugenio PL. Frequent Premature Ventricular Contractions: An Electrical Link to Cardiomyopathy. Cardiol Rev 2015; 23:168.
  99. Takemoto M, Yoshimura H, Ohba Y, et al. Radiofrequency catheter ablation of premature ventricular complexes from right ventricular outflow tract improves left ventricular dilation and clinical status in patients without structural heart disease. J Am Coll Cardiol 2005; 45:1259.
  100. Zhong L, Lee YH, Huang XM, et al. Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: a single-center retrospective study. Heart Rhythm 2014; 11:187.
  101. Leon AR, Greenberg JM, Kanuru N, et al. Cardiac resynchronization in patients with congestive heart failure and chronic atrial fibrillation: effect of upgrading to biventricular pacing after chronic right ventricular pacing. J Am Coll Cardiol 2002; 39:1258.
  102. Dandamudi G, Rampurwala AY, Mahenthiran J, et al. Persistent left ventricular dilatation in tachycardia-induced cardiomyopathy patients after appropriate treatment and normalization of ejection fraction. Heart Rhythm 2008; 5:1111.
  103. Moe GW, Armstrong P. Pacing-induced heart failure: a model to study the mechanism of disease progression and novel therapy in heart failure. Cardiovasc Res 1999; 42:591.
  104. Ling LH, Taylor AJ, Ellims AH, et al. Sinus rhythm restores ventricular function in patients with cardiomyopathy and no late gadolinium enhancement on cardiac magnetic resonance imaging who undergo catheter ablation for atrial fibrillation. Heart Rhythm 2013; 10:1334.