Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Anemia in malaria

David J Roberts, MA, MB, D Phil
Section Editors
Stanley L Schrier, MD
Johanna Daily, MD, MSc
Deputy Editors
Jennifer S Tirnauer, MD
Elinor L Baron, MD, DTMH


Malaria is a global health problem, causing disease on a vast scale. The total burden of disease has been estimated to be 450 million episodes annually and is responsible for 18 percent of all childhood deaths in sub-Saharan Africa, equivalent to 800,000 deaths each year.

The majority of malarial infections are associated with some degree of anemia, the severity of which depends upon patient-specific characteristics (eg, age, innate and acquired resistance, comorbid features) as well as parasite-specific characteristics (eg, species, adhesive, and drug-resistance phenotype). Malarial anemia is capable of causing severe morbidity and mortality especially in children and pregnant women infected with Plasmodium falciparum.

This topic review will discuss the anemia associated with malarial infection.

Separate topic reviews discuss the following:

Malaria diagnosis – (See "Diagnosis of malaria" and "Clinical manifestations of malaria in nonpregnant adults and children".)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: May 10, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Malleret B, Li A, Zhang R, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 2015; 125:1314.
  2. Tamez PA, Liu H, Fernandez-Pol S, et al. Stage-specific susceptibility of human erythroblasts to Plasmodium falciparum malaria infection. Blood 2009; 114:3652.
  3. Singh B, Kim Sung L, Matusop A, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 2004; 363:1017.
  4. Cox-Singh J, Davis TM, Lee KS, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 2008; 46:165.
  5. Greenwood BM. The epidemiology of malaria. Ann Trop Med Parasitol 1997; 91:763.
  6. Menendez C, Fleming AF, Alonso PL. Malaria-related anaemia. Parasitol Today 2000; 16:469.
  7. Schellenberg D, Schellenberg JR, Mushi A, et al. The silent burden of anaemia in Tanzanian children: a community-based study. Bull World Health Organ 2003; 81:581.
  8. Menon MP, Yoon SS, Uganda Malaria Indicator Survey Technical Working Group. Prevalence and Factors Associated with Anemia Among Children Under 5 Years of Age--Uganda, 2009. Am J Trop Med Hyg 2015; 93:521.
  9. Cornet M, Le Hesran JY, Fievet N, et al. Prevalence of and risk factors for anemia in young children in southern Cameroon. Am J Trop Med Hyg 1998; 58:606.
  10. Menendez C, Kahigwa E, Hirt R, et al. Randomised placebo-controlled trial of iron supplementation and malaria chemoprophylaxis for prevention of severe anaemia and malaria in Tanzanian infants. Lancet 1997; 350:844.
  11. Schellenberg D, Menendez C, Kahigwa E, et al. Intermittent treatment for malaria and anaemia control at time of routine vaccinations in Tanzanian infants: a randomised, placebo-controlled trial. Lancet 2001; 357:1471.
  12. Glinz D, Hurrell RF, Ouattara M, et al. The effect of iron-fortified complementary food and intermittent preventive treatment of malaria on anaemia in 12- to 36-month-old children: a cluster-randomised controlled trial. Malar J 2015; 14:347.
  13. Poespoprodjo JR, Fobia W, Kenangalem E, et al. Treatment policy change to dihydroartemisinin-piperaquine contributes to the reduction of adverse maternal and pregnancy outcomes. Malar J 2015; 14:272.
  14. Weatherall DJ, Abdalla S, Pippard MJ. The anaemia of Plasmodium falciparum malaria. Ciba Found Symp 1983; 94:74.
  15. Phillips RE, Pasvol G. Anaemia of Plasmodium falciparum malaria. Baillieres Clin Haematol 1992; 5:315.
  16. Sen R, Tewari AD, Sehgal PK, et al. Clinico-haematological profile in acute and chronic Plasmodium falciparum malaria in children. J Commun Dis 1994; 26:31.
  17. Lamikanra AA, Brown D, Potocnik A, et al. Malarial anemia: of mice and men. Blood 2007; 110:18.
  18. Calis JC, Phiri KS, Faragher EB, et al. Severe anemia in Malawian children. N Engl J Med 2008; 358:888.
  19. Chang Cojulun A, Bustinduy AL, Sutherland LJ, et al. Anemia Among Children Exposed to Polyparasitism in Coastal Kenya. Am J Trop Med Hyg 2015; 93:1099.
  20. Gwamaka M, Kurtis JD, Sorensen BE, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis 2012; 54:1137.
  21. Sazawal S, Black RE, Ramsan M, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 2006; 367:133.
  22. Peña-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev 2015; :CD004736.
  23. Ceesay SJ, Casals-Pascual C, Erskine J, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet 2008; 372:1545.
  24. Steketee RW, Campbell CC. Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Malar J 2010; 9:299.
  25. Pedro R, Akech S, Fegan G, Maitland K. Changing trends in blood transfusion in children and neonates admitted in Kilifi District Hospital, Kenya. Malar J 2010; 9:307.
  26. Bedu-Addo G, Bates I. Causes of massive tropical splenomegaly in Ghana. Lancet 2002; 360:449.
  27. Scott JA, Berkley JA, Mwangi I, et al. Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. Lancet 2011; 378:1316.
  28. Marsh K, Forster D, Waruiru C, et al. Indicators of life-threatening malaria in African children. N Engl J Med 1995; 332:1399.
  29. Berkley J, Mwarumba S, Bramham K, et al. Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg 1999; 93:283.
  30. Krishna S, Waller DW, ter Kuile F, et al. Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. Trans R Soc Trop Med Hyg 1994; 88:67.
  31. English M, Muambi B, Mithwani S, Marsh K. Lactic acidosis and oxygen debt in African children with severe anaemia. QJM 1997; 90:563.
  32. English M. Life-threatening severe malarial anaemia. Trans R Soc Trop Med Hyg 2000; 94:585.
  33. Snow RW, Omumbo JA, Lowe B, et al. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 1997; 349:1650.
  34. Ellis RD, Fay MP, Sagara I, et al. Anaemia in a phase 2 study of a blood stage falciparum malaria vaccine. Malar J 2011; 10:13.
  35. Warrell DA, Molyneux ME, Beales PF. Severe and complicated malaria. In: World Health Organization Division of Control of Tropical Diseases, Royal Society of Tropical Medicine and Hygiene, London 1990.
  36. Roberts DJ, Casals-Pascual C, Weatherall DJ. The clinical and pathophysiological features of malarial anaemia. Curr Top Microbiol Immunol 2005; 295:137.
  37. Howard CT, McKakpo US, Quakyi IA, et al. Relationship of hepcidin with parasitemia and anemia among patients with uncomplicated Plasmodium falciparum malaria in Ghana. Am J Trop Med Hyg 2007; 77:623.
  38. de Mast Q, Nadjm B, Reyburn H, et al. Assessment of urinary concentrations of hepcidin provides novel insight into disturbances in iron homeostasis during malarial infection. J Infect Dis 2009; 199:253.
  39. de Mast Q, van Dongen-Lases EC, Swinkels DW, et al. Mild increases in serum hepcidin and interleukin-6 concentrations impair iron incorporation in haemoglobin during an experimental human malaria infection. Br J Haematol 2009; 145:657.
  40. Prentice AM, Doherty CP, Abrams SA, et al. Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children. Blood 2012; 119:1922.
  41. Abdalla SH, Pasvol G. Malaria: A Hematological Perspective, Imperial College Press, London 2004.
  42. Newton CR, Warn PA, Winstanley PA, et al. Severe anaemia in children living in a malaria endemic area of Kenya. Trop Med Int Health 1997; 2:165.
  43. Stephens, JW. Blackwater Fever, University of Liverpool Press, Liverpool, UK 1937.
  44. Tran TH, Day NP, Ly VC, et al. Blackwater fever in southern Vietnam: a prospective descriptive study of 50 cases. Clin Infect Dis 1996; 23:1274.
  45. Naqvi R, Ahmad E, Akhtar F, et al. Predictors of outcome in malarial renal failure. Ren Fail 1996; 18:685.
  46. Delacollette C, Taelman H, Wery M. An etiologic study of hemoglobinuria and blackwater fever in the Kivu Mountains, Zaire. Ann Soc Belg Med Trop 1995; 75:51.
  47. Bruneel F, Gachot B, Wolff M, et al. Resurgence of blackwater fever in long-term European expatriates in Africa: report of 21 cases and review. Clin Infect Dis 2001; 32:1133.
  48. Jauréguiberry S, Thellier M, Ndour PA, et al. Delayed-onset hemolytic anemia in patients with travel-associated severe malaria treated with artesunate, France, 2011-2013. Emerg Infect Dis 2015; 21:804.
  49. Rehman K, Lötsch F, Kremsner PG, Ramharter M. Haemolysis associated with the treatment of malaria with artemisinin derivatives: a systematic review of current evidence. Int J Infect Dis 2014; 29:268.
  50. Lalloo DG, Shingadia D, Bell DJ, et al. UK malaria treatment guidelines 2016. J Infect 2016; 72:635.
  51. Rolling T, Agbenyega T, Issifou S, et al. Delayed hemolysis after treatment with parenteral artesunate in African children with severe malaria--a double-center prospective study. J Infect Dis 2014; 209:1921.
  52. Olupot-Olupot P, Engoru C, Uyoga S, et al. High Frequency of Blackwater Fever Among Children Presenting to Hospital With Severe Febrile Illnesses in Eastern Uganda. Clin Infect Dis 2017; 64:939.
  53. Tjitra E, Warikar N, Ebsworth EP, et al. Major Burden of P. vivax infection in Papua, Indonesia; A Region with High levels of Chloroquine Resistance. In: XVIe International Congress for Tropical Medicine and Malaria, Queguiner P, Saliou P (Eds), Marseille 2005. p.315.
  54. Rodríguez-Morales AJ, Sánchez E, Vargas M, et al. Anemia and thrombocytopenia in children with Plasmodium vivax malaria. J Trop Pediatr 2006; 52:49.
  55. Nosten F, McGready R, Simpson JA, et al. Effects of Plasmodium vivax malaria in pregnancy. Lancet 1999; 354:546.
  56. Kochar DK, Tanwar GS, Khatri PC, et al. Clinical features of children hospitalized with malaria--a study from Bikaner, northwest India. Am J Trop Med Hyg 2010; 83:981.
  57. Jootar S, Chaisiripoomkere W, Pholvicha P, et al. Suppression of erythroid progenitor cells during malarial infection in Thai adults caused by serum inhibitor. Clin Lab Haematol 1993; 15:87.
  58. Douglas NM, Anstey NM, Buffet PA, et al. The anaemia of Plasmodium vivax malaria. Malar J 2012; 11:135.
  59. Panichakul T, Payuhakrit W, Panburana P, et al. Suppression of erythroid development in vitro by Plasmodium vivax. Malar J 2012; 11:173.
  60. Zuccala ES, Baum J. Cytoskeletal and membrane remodelling during malaria parasite invasion of the human erythrocyte. Br J Haematol 2011; 154:680.
  61. Sim BK, Chitnis CE, Wasniowska K, et al. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 1994; 264:1941.
  62. Chitnis CE, Chaudhuri A, Horuk R, et al. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J Exp Med 1996; 184:1531.
  63. Chitnis CE, Miller LH. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med 1994; 180:497.
  64. Baldwin MR, Li X, Hanada T, et al. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood 2015; 125:2704.
  65. Moxon CA, Grau GE, Craig AG. Malaria: modification of the red blood cell and consequences in the human host. Br J Haematol 2011; 154:670.
  66. Raventos-Suarez C, Kaul DK, Macaluso F, Nagel RL. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 1985; 82:3829.
  67. Newbold C, Craig A, Kyes S, et al. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol 1999; 29:927.
  68. Baruch DI, Pasloske BL, Singh HB, et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 1995; 82:77.
  69. Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 1995; 82:101.
  70. Su XZ, Heatwole VM, Wertheimer SP, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 1995; 82:89.
  71. Kaul DK, Roth EF Jr, Nagel RL, et al. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood 1991; 78:812.
  72. Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 1997; 388:292.
  73. Somner EA, Black J, Pasvol G. Multiple human serum components act as bridging molecules in rosette formation by Plasmodium falciparum-infected erythrocytes. Blood 2000; 95:674.
  74. Boele van Hensbroek M, Calis JC, Phiri KS, et al. Pathophysiological mechanisms of severe anaemia in Malawian children. PLoS One 2010; 5:e12589.
  75. Schwartz RS, Olson JA, Raventos-Suarez C, et al. Altered plasma membrane phospholipid organization in Plasmodium falciparum-infected human erythrocytes. Blood 1987; 69:401.
  76. Allen TM, Williamson P, Schlegel RA. Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc Natl Acad Sci U S A 1988; 85:8067.
  77. Fernandez-Arias C, Rivera-Correa J, Gallego-Delgado J, et al. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia. Cell Host Microbe 2016; 19:194.
  78. Mohan K, Dubey ML, Ganguly NK, Mahajan RC. Plasmodium falciparum: role of activated blood monocytes in erythrocyte membrane damage and red cell loss during malaria. Exp Parasitol 1995; 80:54.
  79. Angus BJ, Chotivanich K, Udomsangpetch R, White NJ. In vivo removal of malaria parasites from red blood cells without their destruction in acute falciparum malaria. Blood 1997; 90:2037.
  80. Looareesuwan S, Ho M, Wattanagoon Y, et al. Dynamic alteration in splenic function during acute falciparum malaria. N Engl J Med 1987; 317:675.
  81. Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology 1999; 119 ( Pt 2):127.
  82. Price RN, Simpson JA, Nosten F, et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg 2001; 65:614.
  83. Fendel R, Brandts C, Rudat A, et al. Hemolysis is associated with low reticulocyte production index and predicts blood transfusion in severe malarial anemia. PLoS One 2010; 5:e10038.
  84. Looareesuwan S, Merry AH, Phillips RE, et al. Reduced erythrocyte survival following clearance of malarial parasitaemia in Thai patients. Br J Haematol 1987; 67:473.
  85. Looareesuwan S, Davis TM, Pukrittayakamee S, et al. Erythrocyte survival in severe falciparum malaria. Acta Trop 1991; 48:263.
  86. Brown AE, Webster HK, Teja-Isavadharm P, Keeratithakul D. Macrophage activation in falciparum malaria as measured by neopterin and interferon-gamma. Clin Exp Immunol 1990; 82:97.
  87. Ladhani S, Lowe B, Cole AO, et al. Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome. Br J Haematol 2002; 119:839.
  88. Evans KJ, Hansen DS, van Rooijen N, et al. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 2006; 107:1192.
  89. Jenkins NE, Chakravorty SJ, Urban BC, et al. The effect of Plasmodium falciparum infection on expression of monocyte surface molecules. Trans R Soc Trop Med Hyg 2006; 100:1007.
  90. Dondorp AM, Angus BJ, Hardeman MR, et al. Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. Am J Trop Med Hyg 1997; 57:507.
  91. Dondorp AM, Nyanoti M, Kager PA, et al. The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion. Trans R Soc Trop Med Hyg 2002; 96:282.
  92. Dondorp AM, Omodeo-Salè F, Chotivanich K, et al. Oxidative stress and rheology in severe malaria. Redox Rep 2003; 8:292.
  93. Omodeo-Salè F, Motti A, Dondorp A, et al. Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products. Eur J Haematol 2005; 74:324.
  94. Uyoga S, Skorokhod OA, Opiyo M, et al. Transfer of 4-hydroxynonenal from parasitized to non-parasitized erythrocytes in rosettes. Proposed role in severe malaria anemia. Br J Haematol 2012; 157:116.
  95. Griffiths MJ, Ndungu F, Baird KL, et al. Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 2001; 113:486.
  96. Facer CA, Bray RS, Brown J. Direct Coombs antiglobulin reactions in Gambian children with Plasmodium falciparum malaria. I. Incidence and class specificity. Clin Exp Immunol 1979; 35:119.
  97. Facer CA. Direct Coombs antiglobulin reactions in Gambian children with Plasmodium falciparum malaria. II. Specificity of erythrocyte-bound IgG. Clin Exp Immunol 1980; 39:279.
  98. Waitumbi JN, Opollo MO, Muga RO, et al. Red cell surface changes and erythrophagocytosis in children with severe plasmodium falciparum anemia. Blood 2000; 95:1481.
  99. Owuor BO, Odhiambo CO, Otieno WO, et al. Reduced immune complex binding capacity and increased complement susceptibility of red cells from children with severe malaria-associated anemia. Mol Med 2008; 14:89.
  100. Gwamaka M, Fried M, Domingo G, Duffy PE. Early and extensive CD55 loss from red blood cells supports a causal role in malarial anaemia. Malar J 2011; 10:386.
  101. Pouvelle B, Buffet PA, Lépolard C, et al. Cytoadhesion of Plasmodium falciparum ring-stage-infected erythrocytes. Nat Med 2000; 6:1264.
  102. Douki JB, Sterkers Y, Lépolard C, et al. Adhesion of normal and Plasmodium falciparum ring-infected erythrocytes to endothelial cells and the placenta involves the rhoptry-derived ring surface protein-2. Blood 2003; 101:5025.
  103. Layez C, Nogueira P, Combes V, et al. Plasmodium falciparum rhoptry protein RSP2 triggers destruction of the erythroid lineage. Blood 2005; 106:3632.
  104. Rosenberg EB, Strickland GT, Yang SL, Whalen GE. IgM antibodies to red cells and autoimmune anemia in patients with malaria. Am J Trop Med Hyg 1973; 22:146.
  105. Lustig HJ, Nussenzweig V, Nussenzweig RS. Erythrocyte membrane-associated immunoglobulins during malaria infection of mice. J Immunol 1977; 119:210.
  106. Sabolovic D, Bouanga JC, Danis M, et al. Alterations of uninfected red blood cells in malaria. Parasitol Res 1994; 80:70.
  107. el-Shoura SM. Falciparum malaria in naturally infected human patients: ultrastructural alterations of non-parasitized red blood cells during anaemia. Appl Parasitol 1993; 34:173.
  108. Pongponratn E, Riganti M, Bunnag D, Harinasuta T. Spleen in falciparum malaria: ultrastructural study. Southeast Asian J Trop Med Public Health 1987; 18:491.
  109. Buffet PA, Safeukui I, Deplaine G, et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood 2011; 117:381.
  110. Safeukui I, Correas JM, Brousse V, et al. Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen. Blood 2008; 112:2520.
  111. Modiano D, Petrarca V, Sirima BS, et al. Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc Natl Acad Sci U S A 1996; 93:13206.
  112. Hill AV, Allsopp CE, Kwiatkowski D, et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991; 352:595.
  113. Hill AV, Elvin J, Willis AC, et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 1992; 360:434.
  114. McGuire W, Hill AV, Allsopp CE, et al. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 1994; 371:508.
  115. McGuire W, Knight JC, Hill AV, et al. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis 1999; 179:287.
  116. Rihet P, Traoré Y, Abel L, et al. Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31-q33. Am J Hum Genet 1998; 63:498.
  117. Atkinson SH, Rockett KA, Morgan G, et al. Tumor necrosis factor SNP haplotypes are associated with iron deficiency anemia in West African children. Blood 2008; 112:4276.
  118. Abdalla SH, Wickramasinghe SN. A study of erythroid progenitor cells in the bone marrow of Gambian children with falciparum malaria. Clin Lab Haematol 1988; 10:33.
  119. Vryonis G. Observations on the parasitization of erythrocytes by Plasmodium vivax, with special reference to reticulocytes. American Journal of Hygiene 1939; 30:41.
  120. Phillips RE, Looareesuwan S, Warrell DA, et al. The importance of anaemia in cerebral and uncomplicated falciparum malaria: role of complications, dyserythropoiesis and iron sequestration. Q J Med 1986; 58:305.
  121. Abdalla S, Weatherall DJ, Wickramasinghe SN, Hughes M. The anaemia of P. falciparum malaria. Br J Haematol 1980; 46:171.
  122. Abdalla SH. Hematopoiesis in human malaria. Blood Cells 1990; 16:401.
  123. Wickramasinghe SN, Abdalla S, Weatherall DJ. Cell cycle distribution of erythroblasts in P. falciparum malaria. Scand J Haematol 1982; 29:83.
  124. Pagola S, Stephens PW, Bohle DS, et al. The structure of malaria pigment beta-haematin. Nature 2000; 404:307.
  125. Skorokhod OA, Caione L, Marrocco T, et al. Inhibition of erythropoiesis in malaria anemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal. Blood 2010; 116:4328.
  126. Giribaldi G, Ulliers D, Schwarzer E, et al. Hemozoin- and 4-hydroxynonenal-mediated inhibition of erythropoiesis. Possible role in malarial dyserythropoiesis and anemia. Haematologica 2004; 89:492.
  127. Casals-Pascual C, Kai O, Cheung JO, et al. Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. Blood 2006; 108:2569.
  128. Lamikanra AA, Theron M, Kooij TW, Roberts DJ. Hemozoin (malarial pigment) directly promotes apoptosis of erythroid precursors. PLoS One 2009; 4:e8446.
  129. Lamikanra AA, Merryweather-Clarke AT, Tipping AJ, Roberts DJ. Distinct mechanisms of inadequate erythropoiesis induced by tumor necrosis factor alpha or malarial pigment. PLoS One 2015; 10:e0119836.
  130. Schwarzer E, Turrini F, Ulliers D, et al. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med 1992; 176:1033.
  131. Schwarzer E, Alessio M, Ulliers D, Arese P. Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes. Infect Immun 1998; 66:1601.
  132. Schwarzer E, Ludwig P, Valente E, Arese P. 15(S)-hydroxyeicosatetraenoic acid (15-HETE), a product of arachidonic acid peroxidation, is an active component of hemozoin toxicity to monocytes. Parassitologia 1999; 41:199.
  133. Schwarzer E, Kuhn H, Valente E, Arese P. Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood 2003; 101:722.
  134. Aguilar R, Moraleda C, Achtman AH, et al. Severity of anaemia is associated with bone marrow haemozoin in children exposed to Plasmodium falciparum. Br J Haematol 2014; 164:877.
  135. Anyona SB, Kempaiah P, Raballah E, et al. Reduced systemic bicyclo-prostaglandin-E2 and cyclooxygenase-2 gene expression are associated with inefficient erythropoiesis and enhanced uptake of monocytic hemozoin in children with severe malarial anemia. Am J Hematol 2012; 87:782.
  136. Novelli EM, Hittner JB, Davenport GC, et al. Clinical predictors of severe malarial anaemia in a holoendemic Plasmodium falciparum transmission area. Br J Haematol 2010; 149:711.
  137. Kwiatkowski D, Hill AV, Sambou I, et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 1990; 336:1201.
  138. Dufour C, Corcione A, Svahn J, et al. TNF-alpha and IFN-gamma are overexpressed in the bone marrow of Fanconi anemia patients and TNF-alpha suppresses erythropoiesis in vitro. Blood 2003; 102:2053.
  139. Felli N, Pedini F, Zeuner A, et al. Multiple members of the TNF superfamily contribute to IFN-gamma-mediated inhibition of erythropoiesis. J Immunol 2005; 175:1464.
  140. Kurtzhals JA, Adabayeri V, Goka BQ, et al. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 1998; 351:1768.
  141. Othoro C, Lal AA, Nahlen B, et al. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis 1999; 179:279.
  142. Malaguarnera L, Pignatelli S, Musumeci M, et al. Plasma levels of interleukin-18 and interleukin-12 in Plasmodium falciparum malaria. Parasite Immunol 2002; 24:489.
  143. Awandare GA, Hittner JB, Kremsner PG, et al. Decreased circulating macrophage migration inhibitory factor (MIF) protein and blood mononuclear cell MIF transcripts in children with Plasmodium falciparum malaria. Clin Immunol 2006; 119:219.
  144. Chaiyaroj SC, Rutta AS, Muenthaisong K, et al. Reduced levels of transforming growth factor-beta1, interleukin-12 and increased migration inhibitory factor are associated with severe malaria. Acta Trop 2004; 89:319.
  145. Lyke KE, Burges R, Cissoko Y, et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 2004; 72:5630.
  146. Miller LH, Roberts T, Shahabuddin M, McCutchan TF. Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol Biochem Parasitol 1993; 59:1.
  147. Schofield L, Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 1993; 177:145.
  148. Krishnegowda G, Hajjar AM, Zhu J, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 2005; 280:8606.
  149. Naik RS, Branch OH, Woods AS, et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med 2000; 192:1563.
  150. Pichyangkul S, Saengkrai P, Webster HK. Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am J Trop Med Hyg 1994; 51:430.
  151. Sherry BA, Alava G, Tracey KJ, et al. Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J Inflamm 1995; 45:85.
  152. Prato M, Giribaldi G, Polimeni M, et al. Phagocytosis of hemozoin enhances matrix metalloproteinase-9 activity and TNF-alpha production in human monocytes: role of matrix metalloproteinases in the pathogenesis of falciparum malaria. J Immunol 2005; 175:6436.
  153. Jaramillo M, Plante I, Ouellet N, et al. Hemozoin-inducible proinflammatory events in vivo: potential role in malaria infection. J Immunol 2004; 172:3101.
  154. Coban C, Ishii KJ, Kawai T, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 2005; 201:19.
  155. Langhorne J, Quin SJ, Sanni LA. Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Chem Immunol 2002; 80:204.
  156. Armitage AE, Pinches R, Eddowes LA, et al. Plasmodium falciparum infected erythrocytes induce hepcidin (HAMP) mRNA synthesis by peripheral blood mononuclear cells. Br J Haematol 2009; 147:769.
  157. de Mast Q, Syafruddin D, Keijmel S, et al. Increased serum hepcidin and alterations in blood iron parameters associated with asymptomatic P. falciparum and P. vivax malaria. Haematologica 2010; 95:1068.
  158. Casals-Pascual C, Huang H, Lakhal-Littleton S, et al. Hepcidin demonstrates a biphasic association with anemia in acute Plasmodium falciparum malaria. Haematologica 2012; 97:1695.
  159. Portugal S, Carret C, Recker M, et al. Host-mediated regulation of superinfection in malaria. Nat Med 2011; 17:732.
  160. Wang HZ, He YX, Yang CJ, et al. Hepcidin is regulated during blood-stage malaria and plays a protective role in malaria infection. J Immunol 2011; 187:6410.
  161. Aguilar R, Moraleda C, Quintó L, et al. Challenges in the diagnosis of iron deficiency in children exposed to high prevalence of infections. PLoS One 2012; 7:e50584.
  162. Jonker FA, Calis JC, van Hensbroek MB, et al. Iron status predicts malaria risk in Malawian preschool children. PLoS One 2012; 7:e42670.
  163. Prentice AM, Cox SE. Iron and malaria interactions: research needs from basic science to global policy. Adv Nutr 2012; 3:583.
  164. Atkinson SH, Armitage AE, khandwala S, et al. Combinatorial effects of malaria season, iron deficiency and inflammation determine plasma hepcidin concentration in African children. Blood 2014.
  165. Pasricha SR, Atkinson SH, Armitage AE, et al. Expression of the iron hormone hepcidin distinguishes different types of anemia in African children. Sci Transl Med 2014; 6:235re3.
  166. Burgmann H, Looareesuwan S, Kapiotis S, et al. Serum levels of erythropoietin in acute Plasmodium falciparum malaria. Am J Trop Med Hyg 1996; 54:280.
  167. el Hassan AM, Saeed AM, Fandrey J, Jelkmann W. Decreased erythropoietin response in Plasmodium falciparum malaria-associated anaemia. Eur J Haematol 1997; 59:299.
  168. Kurtzhals JA, Rodrigues O, Addae M, et al. Reversible suppression of bone marrow response to erythropoietin in Plasmodium falciparum malaria. Br J Haematol 1997; 97:169.
  169. Nussenblatt V, Mukasa G, Metzger A, et al. Anemia and interleukin-10, tumor necrosis factor alpha, and erythropoietin levels among children with acute, uncomplicated Plasmodium falciparum malaria. Clin Diagn Lab Immunol 2001; 8:1164.
  170. Verhoef H, West CE, Kraaijenhagen R, et al. Malarial anemia leads to adequately increased erythropoiesis in asymptomatic Kenyan children. Blood 2002; 100:3489.
  171. Hempel C, Hoyer N, Kildemoes A, et al. Systemic and Cerebral Vascular Endothelial Growth Factor Levels Increase in Murine Cerebral Malaria along with Increased Calpain and Caspase Activity and Can be Reduced by Erythropoietin Treatment. Front Immunol 2014; 5:291.
  172. Wei X, Li Y, Sun X, et al. Erythropoietin protects against murine cerebral malaria through actions on host cellular immunity. Infect Immun 2014; 82:165.
  173. Ricke CH, Staalsoe T, Koram K, et al. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. J Immunol 2000; 165:3309.
  174. Steketee RW, Nahlen BL, Parise ME, Menendez C. The burden of malaria in pregnancy in malaria-endemic areas. Am J Trop Med Hyg 2001; 64:28.
  175. Käser AK, Arguin PM, Chiodini PL, et al. Imported malaria in pregnant women: A retrospective pooled analysis. Travel Med Infect Dis 2015; 13:300.
  176. Staalsoe T, Shulman CE, Bulmer JN, et al. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. Lancet 2004; 363:283.
  177. Kheng S, Muth S, Taylor WR, et al. Tolerability and safety of weekly primaquine against relapse of Plasmodium vivax in Cambodians with glucose-6-phosphate dehydrogenase deficiency. BMC Med 2015; 13:203.