UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 104

of '复发或难治性急性髓系白血病的治疗'

104
TI
A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia.
AU
Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, Kulkarni S, Abboud CN, Cashen AF, Stockerl-Goldstein KE, Vij R, Westervelt P, DiPersio JF
SO
Blood. 2012;119(17):3917.
 
The interaction of acute myeloid leukemia (AML) blasts with the leukemic microenvironment is postulated to be an important mediator of resistance to chemotherapy and disease relapse. We hypothesized that inhibition of the CXCR4/CXCL12 axis by the small molecule inhibitor, plerixafor, would disrupt the interaction of leukemic blasts with the environment and increase the sensitivity of AML blasts to chemotherapy. In this phase 1/2 study, 52 patients with relapsed or refractory AML were treated with plerixafor in combination with mitoxantrone, etoposide, and cytarabine. In phase 1, plerixafor was escalated to a maximum of 0.24 mg/kg/d without any dose-limiting toxicities. In phase 2, 46 patients were treated with plerixafor 0.24 mg/kg/d in combination with chemotherapy with an overall complete remission and complete remission with incomplete blood count recovery rate (CR + CRi) of 46%. Correlative studies demonstrated a 2-fold mobilization in leukemic blasts into the peripheral circulation. No evidence of symptomatic hyperleukocytosis or delayed count recovery was observed with the addition of plerixafor. We conclude that the addition of plerixafor to cytotoxic chemotherapy is feasible in AML, and results in encouraging rates of remission with correlativestudies demonstrating in vivo evidence of disruption of the CXCR4/CXCL12 axis.
AD
Division of Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
PMID