Official reprint from UpToDate®
www.uptodate.com ©2018 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 140

of '慢性髓系白血病的细胞和分子生物学'

Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway.
Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B
EMBO J. 1997;16(20):6151.
The BCR/ABL oncogenic tyrosine kinase activates phosphatidylinositol 3-kinase (PI-3k) by a mechanism that requires binding of BCR/ABL to p85, the regulatory subunit of PI-3k, and an intact BCR/ABL SH2 domain. SH2 domain BCR/ABL mutants deficient in PI-3k activation failed to stimulate Akt kinase, a recently identified PI-3k downstream effector with oncogenic potential, but did activate p21 RAS and p70 S6 kinase. The PI-3k/Akt pathway is essential for BCR/ABL leukemogenesis as indicated by experiments demonstrating that wortmannin, a PI-3k specific inhibitor at low concentrations, suppressed BCR/ABL-dependent colony formation of murine marrow cells, and that a kinase-deficient Akt mutant with dominant-negative activity inhibited BCR/ABL-dependent transformation of murine bone marrow cells in vitro and suppressed leukemia development in SCID mice. In complementation assays using mouse marrow progenitor cells, the ability of transformation-defective SH2 domain BCR/ABL mutants to induce growth factor-independent colony formation and leukemia in SCID mice was markedly enhanced by expression of constitutively active Akt. In retrovirally infected mouse marrow cells, the BCR/ABL mutant lacking the SH2 domain was unable to upregulate the expression of c-Myc and Bcl-2; in contrast, expression of a constitutively active Akt mutant induced Bcl-2 and c-Myc expression, and stimulated the transcription activation function of c-Myc. Together, these data demonstrate the requirement for the BCR/ABL SH2 domain in PI-3k activation and document the essential role of the PI-3k/Akt pathway in BCR/ABL leukemogenesis.
Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.