Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Shigella infection: Treatment and prevention in adults

Rabia Agha, MD
Marcia B Goldberg, MD
Section Editor
Stephen B Calderwood, MD
Deputy Editor
Allyson Bloom, MD


Shigella infections are a major cause of morbidity and mortality in resource-limited settings. They are the most common cause of moderate to severe diarrhea among children in Asia and Africa [1]. In the United States, the incidence of Shigella infections is approximately 4 to 8 per 100,000 [2]. The mortality in resource-rich countries is less than 1 percent [3].

The treatment and prevention Shigella infection in adults will be reviewed here. The epidemiology, microbiology, clinical manifestations, and diagnosis of Shigella, as well as the management of Shigella infection in children, are discussed separately. (See "Shigella infection: Epidemiology, microbiology, and pathogenesis" and "Shigella infection: Clinical manifestations and diagnosis" and "Shigella infection: Treatment and prevention in children".)


Infection with Shigella is generally self-limited; the average duration of symptoms associated with untreated Shigella gastroenteritis is seven days [4]. In the absence of specific antibiotic treatment, patients with Shigella gastroenteritis may shed the organism for up to six weeks after the resolution of symptoms; risk factors for asymptomatic shedding are not known.

Complications of Shigella gastroenteritis, including bacteremia and severe colonic disease that results in obstruction or perforation, are uncommon in adults. However, individuals with underlying immunodeficiency (including HIV infection) or malnutrition are at increased risk for complications of and worse outcomes with Shigella infection [5-8]. (See "Shigella infection: Clinical manifestations and diagnosis", section on 'Intestinal complications' and "Shigella infection: Clinical manifestations and diagnosis", section on 'Systemic complications'.)


The increasing antimicrobial resistance of Shigella species is a major problem in the treatment of Shigella gastroenteritis. Thus, antibiotic susceptibility testing is essential for management of all patients with Shigella infection. This is particularly important in patients who are at risk of infection with a resistant isolate, including patients with infections in Asia and Africa, those who report international travel, HIV-infected individuals, and men who have sex with men (MSM).

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Jul 15, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Liu J, Platts-Mills JA, Juma J, et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 2016; 388:1291.
  2. Marder EP, Cieslak PR, Cronquist AB, et al. Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food and the Effect of Increasing Use of Culture-Independent Diagnostic Tests on Surveillance - Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2013-2016. MMWR Morb Mortal Wkly Rep 2017; 66:397.
  3. Ashkenazi S, Cleary TG. Shigella species. In: Principles and practice of pediatric infectious diseases, 3rd, Long SS, Pickering LK, Prober CG (Eds), Churchill Livingstone, Philadelphia 2008. p.817.
  4. Dupont HL. Shigella species (bacillary dysentery). In: Principles and Practice of Infectious Diseases, 6th Ed, Mandell GL, Bennett JE, Dolin R (Eds), Churchill Livingstone, Philadelphia 2005. p.2655.
  5. Baer JT, Vugia DJ, Reingold AL, et al. HIV infection as a risk factor for shigellosis. Emerg Infect Dis 1999; 5:820.
  6. Angulo FJ, Swerdlow DL. Bacterial enteric infections in persons infected with human immunodeficiency virus. Clin Infect Dis 1995; 21 Suppl 1:S84.
  7. Struelens MJ, Patte D, Kabir I, et al. Shigella septicemia: prevalence, presentation, risk factors, and outcome. J Infect Dis 1985; 152:784.
  8. Greenberg D, Marcu S, Melamed R, Lifshitz M. Shigella bacteremia: a retrospective study. Clin Pediatr (Phila) 2003; 42:411.
  9. Kruse H, Kariuki S, Søli N, Olsvik O. Multiresistant Shigella species from African AIDS patients: antibacterial resistance patterns and application of the E-test for determination of minimum inhibitory concentration. Scand J Infect Dis 1992; 24:733.
  10. Ashkenazi S, Levy I, Kazaronovski V, Samra Z. Growing antimicrobial resistance of Shigella isolates. J Antimicrob Chemother 2003; 51:427.
  11. Sivapalasingam S, Nelson JM, Joyce K, et al. High prevalence of antimicrobial resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002. Antimicrob Agents Chemother 2006; 50:49.
  12. Ud-Din AI, Wahid SU, Latif HA, et al. Changing trends in the prevalence of Shigella species: emergence of multi-drug resistant Shigella sonnei biotype g in Bangladesh. PLoS One 2013; 8:e82601.
  13. Gu B, Cao Y, Pan S, et al. Comparison of the prevalence and changing resistance to nalidixic acid and ciprofloxacin of Shigella between Europe-America and Asia-Africa from 1998 to 2009. Int J Antimicrob Agents 2012; 40:9.
  14. Cheasty T, Day M, Threlfall EJ. Increasing incidence of resistance to nalidixic acid in shigellas from humans in England and Wales: implications for therapy. Clin Microbiol Infect 2004; 10:1033.
  15. Rahman M, Shoma S, Rashid H, et al. Increasing spectrum in antimicrobial resistance of Shigella isolates in Bangladesh: resistance to azithromycin and ceftriaxone and decreased susceptibility to ciprofloxacin. J Health Popul Nutr 2007; 25:158.
  16. Kuo CY, Su LH, Perera J, et al. Antimicrobial susceptibility of Shigella isolates in eight Asian countries, 2001-2004. J Microbiol Immunol Infect 2008; 41:107.
  17. Boumghar-Bourtchai L, Mariani-Kurkdjian P, Bingen E, et al. Macrolide-resistant Shigella sonnei. Emerg Infect Dis 2008; 14:1297.
  18. Holt KE, Thieu Nga TV, Thanh DP, et al. Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc Natl Acad Sci U S A 2013; 110:17522.
  19. Bowen A, Hurd J, Hoover C, et al. Importation and domestic transmission of Shigella sonnei resistant to ciprofloxacin - United States, May 2014-February 2015. MMWR Morb Mortal Wkly Rep 2015; 64:318.
  20. CDC Health Alert Network. CDC Recommendations for Diagnosing and Managing Shigella Strains with Possible Reduced Susceptibility to Ciprofloxacin. April 18, 2017. https://emergency.cdc.gov/han/han00401.asp (Accessed on April 24, 2017).
  21. Heiman KE, Karlsson M, Grass J, et al. Notes from the field: Shigella with decreased susceptibility to azithromycin among men who have sex with men - United States, 2002-2013. MMWR Morb Mortal Wkly Rep 2014; 63:132.
  22. Sjölund Karlsson M, Bowen A, Reporter R, et al. Outbreak of infections caused by Shigella sonnei with reduced susceptibility to azithromycin in the United States. Antimicrob Agents Chemother 2013; 57:1559.
  23. Bowen A, Eikmeier D, Talley P, et al. Notes from the Field: Outbreaks of Shigella sonnei Infection with Decreased Susceptibility to Azithromycin Among Men Who Have Sex with Men - Chicago and Metropolitan Minneapolis-St. Paul, 2014. MMWR Morb Mortal Wkly Rep 2015; 64:597.
  24. Bowen A, Grass J, Bicknese A, et al. Elevated Risk for Antimicrobial Drug-Resistant Shigella Infection among Men Who Have Sex with Men, United States, 2011-2015. Emerg Infect Dis 2016; 22:1613.
  25. Hines JZ, Pinsent T, Rees K, et al. Notes from the Field: Shigellosis Outbreak Among Men Who Have Sex with Men and Homeless Persons - Oregon, 2015-2016. MMWR Morb Mortal Wkly Rep 2016; 65:812.
  26. CDC Health Advisory. Ciprofloxacin- and Azithromycin-Nonsusceptible Shigellosis in the United States. http://emergency.cdc.gov/han/han00379.asp.
  27. Centers for Disease Control and Prevention (CDC). Notes from the field: emergence of Shigella flexneri 2a resistant to ceftriaxone and ciprofloxacin --- South Carolina, October 2010. MMWR Morb Mortal Wkly Rep 2010; 59:1619.
  28. CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2014 (Final Report). US Department of Health and Human Services, Atlanta, GA 2016. http://www.cdc.gov/narms/reports/annual-human-isolates-report-2014.html (Accessed on September 01, 2016).
  29. Shiferaw B, Solghan S, Palmer A, et al. Antimicrobial susceptibility patterns of Shigella isolates in Foodborne Diseases Active Surveillance Network (FoodNet) sites, 2000-2010. Clin Infect Dis 2012; 54 Suppl 5:S458.
  30. Rowe B, Threlfall EJ. Drug resistance in gram-negative aerobic bacilli. Br Med Bull 1984; 40:68.
  31. Kozyreva VK, Jospin G, Greninger AL, et al. Recent Outbreaks of Shigellosis in California Caused by Two Distinct Populations of Shigella sonnei with either Increased Virulence or Fluoroquinolone Resistance. mSphere 2016; 1.
  32. DuPont HL, Hornick RB. Adverse effect of lomotil therapy in shigellosis. JAMA 1973; 226:1525.
  33. Christopher PR, David KV, John SM, Sankarapandian V. Antibiotic therapy for Shigella dysentery. Cochrane Database Syst Rev 2010; :CD006784.
  34. Wilson R, Feldman RA, Davis J, LaVenture M. Family illness associated with Shigella infection: the interrelationship of age of the index patient and the age of household members in acquisition of illness. J Infect Dis 1981; 143:130.
  35. Haltalin KC, Nelson JD, Ring R 3rd, et al. Double-blind treatment study of shigellosis comparing ampicillin, sulfadiazine, and placebo. J Pediatr 1967; 70:970.
  36. Kabir I, Butler T, Khanam A. Comparative efficacies of single intravenous doses of ceftriaxone and ampicillin for shigellosis in a placebo-controlled trial. Antimicrob Agents Chemother 1986; 29:645.
  37. Oldfield EC 3rd, Bourgeois AL, Omar AK, Pazzaglia GL. Empirical treatment of Shigella dysentery with trimethoprim: five-day course vs. single dose. Am J Trop Med Hyg 1987; 37:616.
  38. Haltalin KC, Kusmiesz HT, Hinton LV, Nelson JD. Treatment of acute diarrhea in outpatients. Double-blind study comparing ampicillin and placebo. Am J Dis Child 1972; 124:554.
  39. Thompson CN, Thieu NT, Vinh PV, et al. Clinical implications of reduced susceptibility to fluoroquinolones in paediatric Shigella sonnei and Shigella flexneri infections. J Antimicrob Chemother 2016; 71:807.
  40. Bennish ML, Khan WA, Begum M, et al. Low risk of hemolytic uremic syndrome after early effective antimicrobial therapy for Shigella dysenteriae type 1 infection in Bangladesh. Clin Infect Dis 2006; 42:356.
  41. Slinger R, Desjardins M, McCarthy AE, et al. Suboptimal clinical response to ciprofloxacin in patients with enteric fever due to Salmonella spp. with reduced fluoroquinolone susceptibility: a case series. BMC Infect Dis 2004; 4:36.
  42. Parry CM, Vinh H, Chinh NT, et al. The influence of reduced susceptibility to fluoroquinolones in Salmonella enterica serovar Typhi on the clinical response to ofloxacin therapy. PLoS Negl Trop Dis 2011; 5:e1163.
  43. Bennish ML, Salam MA, Khan WA, Khan AM. Treatment of shigellosis: III. Comparison of one- or two-dose ciprofloxacin with standard 5-day therapy. A randomized, blinded trial. Ann Intern Med 1992; 117:727.
  44. Bassily S, Hyams KC, el-Masry NA, et al. Short-course norfloxacin and trimethoprim-sulfamethoxazole treatment of shigellosis and salmonellosis in Egypt. Am J Trop Med Hyg 1994; 51:219.
  45. Gendrel D, Moreno JL, Nduwimana M, et al. One-dose treatment with pefloxacin for infection due to multidrug-resistant Shigella dysenteriae type 1 in Burundi. Clin Infect Dis 1997; 24:83.
  46. Islam MR, Alam AN, Hussain MS, Mahalanabis D. Effect of antimicrobial (nalidixic acid) therapy in shigellosis and predictive values of outcome variables in patients susceptible or resistant to it. J Trop Med Hyg 1995; 98:121.
  47. World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1 http://whqlibdoc.who.int/publications/2005/9241592330.pdf (Accessed on March 21, 2013).
  48. Curtis V, Cairncross S. Effect of washing hands with soap on diarrhoea risk in the community: a systematic review. Lancet Infect Dis 2003; 3:275.
  49. O'Ryan M, Vidal R, del Canto F, et al. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601.
  50. Walker RI. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children. Vaccine 2015; 33:954.
  51. Taylor DN, McKenzie R, Durbin A, et al. Rifaximin, a nonabsorbed oral antibiotic, prevents shigellosis after experimental challenge. Clin Infect Dis 2006; 42:1283.