Smarter Decisions,
Better Care

UpToDate synthesizes the most recent medical information into evidence-based practical recommendations clinicians trust to make the right point-of-care decisions.

  • Rigorous editorial process: Evidence-based treatment recommendations
  • World-Renowned physician authors: over 5,100 physician authors and editors around the globe
  • Innovative technology: integrates into the workflow; access from EMRs

Choose from the list below to learn more about subscriptions for a:


Subscribers log in here


Regulation of erythropoiesis

INTRODUCTION

The production of erythrocytes is a tightly regulated process. During steady state hematopoiesis, approximately 1010 red blood cells are produced per hour in the bone marrow to maintain the hemoglobin level within fairly narrow limits. Production can be rapidly increased in the setting of ongoing blood loss or hemolysis.

Erythropoiesis begins with the differentiation of a small pool of multipotent stem cells into the most primitive erythroid progenitors. These progenitors develop into recognizable erythroid precursors, which subsequently follow a specific differentiation program that culminates in the emergence of mature erythrocytes. This process is driven by successive combinations of transcription factors that dictate the expression of adhesion and hematopoietic growth factor receptors (HGFRs):

Adhesion receptors play an important role in the localization and release of maturing cells from specific niches in bone marrow.

Hematopoietic growth factors (HGFs), such as interleukin 3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and Stem Cell Factor (SCF, also called Kit ligand or Steel factor), are important for the amplification of progenitor cells.

Erythropoietin (EPO) is a growth factor essential for the amplification and terminal differentiation of erythroid progenitors and precursors. Information concerning the control of EPO expression by hypoxia has provided new insight into the regulation of erythropoiesis. (See 'Hypoxia and EPO expression' below and "Molecular pathogenesis of congenital polycythemic disorders and polycythemia vera", section on 'Oxygen sensor'.)

                            

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Nov 2014. | This topic last updated: Dec 12, 2014.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
References
Top
  1. Suda T, Suda J, Ogawa M. Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci U S A 1984; 81:2520.
  2. Li J, Hale J, Bhagia P, et al. Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 2014; 124:3636.
  3. Emerson SG, Sieff CA, Wang EA, et al. Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity. J Clin Invest 1985; 76:1286.
  4. Dicke KA, van Noord MJ, Maat B, et al. Identification of cells in primate bone marrow resembling the hemopoietic stem cell in the mouse. Blood 1973; 42:195.
  5. Rosse C. Small lymphocyte and transitional cell populations of the bone marrow; their role in the mediation of immune and hemopoietic progenitor cell functions. Int Rev Cytol 1976; 45:155.
  6. Axelrad AA, McLeod DL, et al. Properties of cells that produce erythrocytic colonies in vitro. In: Hematopoiesis in Culture, Robinson, WA (Eds), National Institutes of Health, Washington 1974. p.226.
  7. Finch CA, Deubelbeiss K, Cook JD, et al. Ferrokinetics in man. Medicine (Baltimore) 1970; 49:17.
  8. Lord BI. Kinetics of the recognizable erythrocyte precursor cells. Clin Haematol 1979; 8:355.
  9. Hillman RS, Giblett ER. Red cell membrane alteration associated with "marrow stress". J Clin Invest 1965; 44:1730.
  10. Nathan DG. Rubbish in the red cell. N Engl J Med 1969; 281:558.
  11. Etlinger JD, Goldberg AL. Control of protein degradation in reticulocytes and reticulocyte extracts by hemin. J Biol Chem 1980; 255:4563.
  12. Müller-Sieburg CE, Deryugina E. The stromal cells' guide to the stem cell universe. Stem Cells 1995; 13:477.
  13. Clark BR, Keating A. Biology of bone marrow stroma. Ann N Y Acad Sci 1995; 770:70.
  14. Patel VP, Lodish HF. Loss of adhesion of murine erythroleukemia cells to fibronectin during erythroid differentiation. Science 1984; 224:996.
  15. Patel VP, Lodish HF. The fibronectin receptor on mammalian erythroid precursor cells: characterization and developmental regulation. J Cell Biol 1986; 102:449.
  16. Tsai S, Patel V, Beaumont E, et al. Differential binding of erythroid and myeloid progenitors to fibroblasts and fibronectin. Blood 1987; 69:1587.
  17. Hamamura K, Matsuda H, Takeuchi Y, et al. A critical role of VLA-4 in erythropoiesis in vivo. Blood 1996; 87:2513.
  18. Sadahira Y, Yoshino T, Monobe Y. Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med 1995; 181:411.
  19. Yanai N, Sekine C, Yagita H, Obinata M. Roles for integrin very late activation antigen-4 in stroma-dependent erythropoiesis. Blood 1994; 83:2844.
  20. Rhodes MM, Kopsombut P, Bondurant MC, et al. Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 2008; 111:1700.
  21. Chow A, Huggins M, Ahmed J, et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 2012; 19:429.
  22. Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood 2008; 112:470.
  23. Kawane K, Fukuyama H, Kondoh G, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 2001; 292:1546.
  24. Shivdasani RA, Orkin SH. The transcriptional control of hematopoiesis. Blood 1996; 87:4025.
  25. Begley CG, Aplan PD, Davey MP, et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci U S A 1989; 86:2031.
  26. Finger LR, Kagan J, Christopher G, et al. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci U S A 1989; 86:5039.
  27. Begley CG, Aplan PD, Denning SM, et al. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci U S A 1989; 86:10128.
  28. Mouthon MA, Bernard O, Mitjavila MT, et al. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 1993; 81:647.
  29. Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 1995; 373:432.
  30. Robb L, Lyons I, Li R, et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A 1995; 92:7075.
  31. Visvader JE, Fujiwara Y, Orkin SH. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 1998; 12:473.
  32. Mikkola HK, Klintman J, Yang H, et al. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 2003; 421:547.
  33. Aplan PD, Nakahara K, Orkin SH, Kirsch IR. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J 1992; 11:4073.
  34. Hoang T, Paradis E, Brady G, et al. Opposing effects of the basic helix-loop-helix transcription factor SCL on erythroid and monocytic differentiation. Blood 1996; 87:102.
  35. Boehm T, Foroni L, Kaneko Y, et al. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A 1991; 88:4367.
  36. Rabbitts TH. Chromosomal translocations in human cancer. Nature 1994; 372:143.
  37. Warren AJ, Colledge WH, Carlton MB, et al. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 1994; 78:45.
  38. Valge-Archer VE, Osada H, Warren AJ, et al. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci U S A 1994; 91:8617.
  39. Wadman I, Li J, Bash RO, et al. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 1994; 13:4831.
  40. Dorfman DM, Wilson DB, Bruns GA, Orkin SH. Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J Biol Chem 1992; 267:1279.
  41. Leonard M, Brice M, Engel JD, Papayannopoulou T. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood 1993; 82:1071.
  42. Visvader J, Adams JM. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood 1993; 82:1493.
  43. Briegel K, Lim KC, Plank C, et al. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev 1993; 7:1097.
  44. Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371:221.
  45. Spinner MA, Sanchez LA, Hsu AP, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 2014; 123:809.
  46. Fujimaki S, Harigae H, Sugawara T, et al. Decreased expression of transcription factor GATA-2 in haematopoietic stem cells in patients with aplastic anaemia. Br J Haematol 2001; 113:52.
  47. Martin DI, Zon LI, Mutter G, Orkin SH. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 1990; 344:444.
  48. Romeo PH, Prandini MH, Joulin V, et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 1990; 344:447.
  49. Zon LI, Yamaguchi Y, Yee K, et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 1993; 81:3234.
  50. Zheng J, Kitajima K, Sakai E, et al. Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells. Blood 2006; 107:520.
  51. Pevny L, Simon MC, Robertson E, et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 1991; 349:257.
  52. Simon MC, Pevny L, Wiles MV, et al. Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet 1992; 1:92.
  53. Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 1994; 8:1184.
  54. Pevny L, Lin CS, D'Agati V, et al. Development of hematopoietic cells lacking transcription factor GATA-1. Development 1995; 121:163.
  55. Weiss MJ, Orkin SH. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci U S A 1995; 92:9623.
  56. Gutiérrez L, Tsukamoto S, Suzuki M, et al. Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 2008; 111:4375.
  57. Nichols KE, Crispino JD, Poncz M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000; 24:266.
  58. Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002; 32:148.
  59. Hitzler JK, Cheung J, Li Y, et al. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 2003; 101:4301.
  60. Ahmed M, Sternberg A, Hall G, et al. Natural history of GATA1 mutations in Down syndrome. Blood 2004; 103:2480.
  61. Sankaran VG, Ghazvinian R, Do R, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest 2012; 122:2439.
  62. Miller IJ, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol 1993; 13:2776.
  63. Zhang P, Behre G, Pan J, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci U S A 1999; 96:8705.
  64. Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet 2010; 42:801.
  65. Zhou D, Liu K, Sun CW, et al. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet 2010; 42:742.
  66. Tallack MR, Perkins AC. Three fingers on the switch: Krüppel-like factor 1 regulation of γ-globin to β-globin gene switching. Curr Opin Hematol 2013; 20:193.
  67. Arnaud L, Saison C, Helias V, et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet 2010; 87:721.
  68. Viprakasit V, Ekwattanakit S, Riolueang S, et al. Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood 2014; 123:1586.
  69. Satta S, Perseu L, Maccioni L, et al. Delayed fetal hemoglobin switching in subjects with KLF1 gene mutation. Blood Cells Mol Dis 2012; 48:22.
  70. Liu D, Zhang X, Yu L, et al. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood 2014; 124:803.
  71. Malik J, Kim AR, Tyre KA, et al. Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica 2013; 98:1778.
  72. Sieff CA, Emerson SG, Mufson A, et al. Dependence of highly enriched human bone marrow progenitors on hemopoietic growth factors and their response to recombinant erythropoietin. J Clin Invest 1986; 77:74.
  73. Eaves CJ, Eaves AC. Erythropoietin (Ep) dose-response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera. Blood 1978; 52:1196.
  74. Eaves AC, Eaves CJ. Erythropoiesis in culture. Clin Haematol 1984; 13:371.
  75. Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med 2006; 354:2034.
  76. Sieff CA, Ekern SC, Nathan DG, Anderson JW. Combinations of recombinant colony-stimulating factors are required for optimal hematopoietic differentiation in serum-deprived culture. Blood 1989; 73:688.
  77. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995; 83:59.
  78. Socolovsky M, Fallon AE, Wang S, et al. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98:181.
  79. Socolovsky M, Nam H, Fleming MD, et al. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 2001; 98:3261.
  80. de la Chapelle A, Träskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci U S A 1993; 90:4495.
  81. Klingmüller U, Lorenz U, Cantley LC, et al. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995; 80:729.
  82. Galli SJ, Zsebo KM, Geissler EN. The kit ligand, stem cell factor. Adv Immunol 1994; 55:1.
  83. Abkowitz JL, Sabo KM, Nakamoto B, et al. Diamond-blackfan anemia: in vitro response of erythroid progenitors to the ligand for c-kit. Blood 1991; 78:2198.
  84. Bagnara GP, Zauli G, Vitale L, et al. In vitro growth and regulation of bone marrow enriched CD34+ hematopoietic progenitors in Diamond-Blackfan anemia. Blood 1991; 78:2203.
  85. Olivieri NF, Grunberger T, Ben-David Y, et al. Diamond-Blackfan anemia: heterogenous response of hematopoietic progenitor cells in vitro to the protein product of the steel locus. Blood 1991; 78:2211.
  86. Nocka K, Majumder S, Chabot B, et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice--evidence for an impaired c-kit kinase in mutant mice. Genes Dev 1989; 3:816.
  87. Wu H, Klingmüller U, Besmer P, Lodish HF. Interaction of the erythropoietin and stem-cell-factor receptors. Nature 1995; 377:242.
  88. Jubinsky PT, Krijanovski OI, Nathan DG, et al. The beta chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood 1997; 90:1867.
  89. Sawada K, Krantz SB, Dessypris EN, et al. Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development. J Clin Invest 1989; 83:1701.
  90. Kurtz A, Jelkmann W, Bauer C. Insulin stimulates erythroid colony formation independently of erythropoietin. Br J Haematol 1983; 53:311.
  91. Yu J, Shao L, Vaughan J, et al. Characterization of the potentiation effect of activin on human erythroid colony formation in vitro. Blood 1989; 73:952.
  92. Smith JC, Price BM, Van Nimmen K, Huylebroeck D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 1990; 345:729.
  93. Paulson RF. Targeting a new regulator of erythropoiesis to alleviate anemia. Nat Med 2014; 20:334.
  94. Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med 2014; 20:398.
  95. Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood 2014; 123:3864.
  96. Ruckle J, Jacobs M, Kramer W, et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res 2009; 24:744.
  97. Carrancio S, Markovics J, Wong P, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol 2014; 165:870.
  98. Attie KM, Allison MJ, McClure T, et al. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol 2014; 89:766.
  99. Galimi F, Bagnara GP, Bonsi L, et al. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors. J Cell Biol 1994; 127:1743.
  100. Zhan M, Miller CP, Papayannopoulou T, et al. MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol 2007; 35:1015.
  101. Zhao G, Yu D, Weiss MJ. MicroRNAs in erythropoiesis. Curr Opin Hematol 2010; 17:155.
  102. Zhang L, Flygare J, Wong P, et al. miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 2011; 25:119.
  103. Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005; 102:18081.
  104. Lu J, Guo S, Ebert BL, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14:843.
  105. Barroga CF, Pham H, Kaushansky K. Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression. Exp Hematol 2008; 36:1585.
  106. Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 2008; 105:3333.
  107. Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells 2010; 28:287.
  108. Pase L, Layton JE, Kloosterman WP, et al. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 2009; 113:1794.
  109. Patrick DM, Zhang CC, Tao Y, et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev 2010; 24:1614.
  110. Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev 2010; 24:1620.
  111. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992; 72:449.
  112. Blanchard KL, Fandrey J, Goldberg MA, Bunn HF. Regulation of the erythropoietin gene. Stem Cells 1993; 11 Suppl 1:1.
  113. Porter DL, Goldberg MA. Regulation of erythropoietin production. Exp Hematol 1993; 21:399.
  114. Bunn HF, Gu J, Huang LE, et al. Erythropoietin: a model system for studying oxygen-dependent gene regulation. J Exp Biol 1998; 201:1197.
  115. Semenza GL. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 2009; 114:2015.
  116. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995; 92:5510.
  117. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270:1230.
  118. Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med 2011; 365:537.
  119. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 1998; 95:7987.
  120. Cockman ME, Masson N, Mole DR, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000; 275:25733.
  121. Kaelin WG Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2002; 2:673.
  122. Semenza GL. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 2001; 107:1.
  123. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292:468.
  124. Zhu H, Bunn HF. Signal transduction. How do cells sense oxygen? Science 2001; 292:449.
  125. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292:464.
  126. Ang SO, Chen H, Hirota K, et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 2002; 32:614.
  127. Percy MJ, Zhao Q, Flores A, et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci U S A 2006; 103:654.
  128. Percy MJ, Furlow PW, Lucas GS, et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med 2008; 358:162.
  129. Scortegagna M, Ding K, Zhang Q, et al. HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood 2005; 105:3133.
  130. Weidemann A, Kerdiles YM, Knaup KX, et al. The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. J Clin Invest 2009; 119:3373.
  131. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269:23757.
  132. Wykoff CC, Sotiriou C, Cockman ME, et al. Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br J Cancer 2004; 90:1235.
  133. Rathmell WK, Simon MC. VHL: oxygen sensing and vasculogenesis. J Thromb Haemost 2005; 3:2627.
  134. Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005; 105:659.
  135. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 2007; 117:1926.
  136. Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest 1999; 103:691.
  137. Semenza GL, Koury ST, Nejfelt MK, et al. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci U S A 1991; 88:8725.
  138. Blanchard KL, Acquaviva AM, Galson DL, Bunn HF. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol 1992; 12:5373.
  139. Galson DL, Tsuchiya T, Tendler DS, et al. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1. Mol Cell Biol 1995; 15:2135.
  140. Arany Z, Huang LE, Eckner R, et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A 1996; 93:12969.
  141. Frede S, Freitag P, Geuting L, et al. Oxygen-regulated expression of the erythropoietin gene in the human renal cell line REPC. Blood 2011; 117:4905.
  142. GRANT WC, ROOT WS. Fundamental stimulus for erythropoiesis. Physiol Rev 1952; 32:449.
  143. D'Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell 1989; 57:277.
  144. Krantz SB, Goldwasser E. Specific binding of erythropoietin to spleen cells infected with the anemia strain of Friend virus. Proc Natl Acad Sci U S A 1984; 81:7574.
  145. Sawyer ST, Krantz SB, Sawada K. Receptors for erythropoietin in mouse and human erythroid cells and placenta. Blood 1989; 74:103.
  146. Sawada K, Krantz SB, Sawyer ST, Civin CI. Quantitation of specific binding of erythropoietin to human erythroid colony-forming cells. J Cell Physiol 1988; 137:337.
  147. Akahane K, Tojo A, Fukamachi H, et al. Binding of iodinated erythropoietin to rat bone marrow cells under normal and anemic conditions. Exp Hematol 1989; 17:177.
  148. ALPEN EL, CRANMORE D. Cellular kinetics and iron utilization in bone marrow as observed by Fe59 radioautography. Ann N Y Acad Sci 1959; 77:753.
  149. Macklis RM, Javid J, Lipton JM, et al. Synthesis of hemoglobin F in adult simian erythroid progenitor-derived colonies. J Clin Invest 1982; 70:752.
  150. Friedman AD, Linch DC, Miller B, et al. Determination of the hemoglobin F program in human progenitor-derived erythroid cells. J Clin Invest 1985; 75:1359.
  151. Dover GJ, Boyer SH, Zinkham WH. Production of erythrocytes that contain fetal hemoglobin in anemia. Transient in vivo changes. J Clin Invest 1979; 63:173.
  152. Kidoguchi K, Ogawa M, Karam JD, Martin AG. Augmentation of fetal hemoglobin (HbF) synthesis in culture by human erythropoietic precursors in the marrow and peripheral blood: studies in sickle cell anemia and nonhemoglobinopathic adults. Blood 1978; 52:1115.
  153. Clarke BJ, Nathan DG, Alter BP, et al. Hemoglobin synthesis in human BFU-E and CFU-E-derived erythroid colonies. Blood 1979; 54:805.
  154. Papayannopoulou T, Brice M, Stamatoyannopoulos G. Hemoglobin F synthesis in vitro: evidence for control at the level of primitive erythroid stem cells. Proc Natl Acad Sci U S A 1977; 74:2923.
  155. Harandi OF, Hedge S, Wu DC, et al. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J Clin Invest 2010; 120:4507.
  156. Perry JM, Harandi OF, Porayette P, et al. Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling. Blood 2009; 113:911.
  157. Mangan KF, Chikkappa G, Bieler LZ, et al. Regulation of human blood erythroid burst-forming unit (BFU-E) proliferation by T-lymphocyte subpopulations defined by Fc receptors and monoclonal antibodies. Blood 1982; 59:990.
  158. Torok-Storb B, Martin PJ, Hansen JA. Regulation of in vitro erythropoiesis by normal T cells: evidence for two T-cell subsets with opposing function. Blood 1981; 58:171.
  159. Lipton JM, Smith BR, et al. Suppression of in vitro erythropoiesis by a subset of large granular lymphocytes. Blood 1984; 64:337a.
  160. Hoffman R, Kopel S, Hsu SD, et al. T cell chronic lymphocytic leukemia: presence in bone marrow and peripheral blood of cells that suppress erythropoiesis in vitro. Blood 1978; 52:255.
  161. Bagby GC Jr. T lymphocytes involved in inhibition of granulopoiesis in two neutropenic patients are of the cytotoxic/suppressor (T3+T8+) subset. J Clin Invest 1981; 68:1597.
  162. Abdou NI, NaPombejara C, Balentine L, Abdou NL. Suppressor cell-mediated neutropenia in Felty's syndrome. J Clin Invest 1978; 61:738.
  163. Sugimoto M, Wakabayashi Y, Shiokawa Y, Takaku F. Effect of peripheral blood lymphocytes from systemic lupus erythematosus patients on human bone marrow granulocyte precursor cells (colony-forming units in culture). Stem Cells 1982; 2:164.
  164. Bom-van Noorloos AA, Pegels HG, van Oers RH, et al. Proliferation of T gamma cells with killer-cell activity in two patients with neutropenia and recurrent infections. N Engl J Med 1980; 302:933.
  165. Linch DC, Cawley JC, MacDonald SM, et al. Acquired pure red-cell aplasia associated with an increase of T cells bearing receptors for the Fc of IgG. Acta Haematol 1981; 65:270.
  166. Lipton JM, Nadler LM, Canellos GP, et al. Evidence for genetic restriction in the suppression of erythropoiesis by a unique subset of T lymphocytes in man. J Clin Invest 1983; 72:694.
  167. Torok-Storb BJ, Sieff C, Storb R, et al. In vitro tests for distinguishing possible immune-mediated aplastic anemia from transfusion-induced sensitization. Blood 1980; 55:211.
  168. Bacigalupo A, Podestà M, Mingari MC, et al. Immune suppression of hematopoiesis in aplastic anemia: activity of T-gamma lymphocytes. J Immunol 1980; 125:1449.
  169. Smith BR, Lipton JM, et al. Multiparameter flow cytometric characterization of a unique T-lymphocyte subclass associated with granulocytopenia and pure red cell aplasia. Blood 1984; 64:343a.
  170. Torok-Storb B, Hansen JA. Modulation of in vitro BFU-E growth by normal Ia-positive T cells is restricted by HLA-DR. Nature 1982; 298:473.
  171. Falkenburg JH, Jansen J, van der Vaart-Duinkerken N, et al. Polymorphic and monomorphic HLA-DR determinants on human hematopoietic progenitor cells. Blood 1984; 63:1125.
  172. Sieff C, Bicknell D, Caine G, et al. Changes in cell surface antigen expression during hemopoietic differentiation. Blood 1982; 60:703.
  173. Sparrow RL, Williams N. The pattern of HLA-DR and HLA-DQ antigen expression on clonable subpopulations of human myeloid progenitor cells. Blood 1986; 67:379.
  174. Burdach SE, Levitt LJ. Receptor-specific inhibition of bone marrow erythropoiesis by recombinant DNA-derived interleukin-2. Blood 1987; 69:1368.
  175. de Bruin AM, Voermans C, Nolte MA. Impact of interferon-γ on hematopoiesis. Blood 2014; 124:2479.
  176. Wang CQ, Udupa KB, Lipschitz DA. Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development. J Cell Physiol 1995; 162:134.
  177. Burdach S, Shatsky M, Wagenhorst B, Levitt L. The T-cell CD2 determinant mediates inhibition of erythropoiesis by the lymphokine cascade. Blood 1988; 72:770.
  178. Roodman GD, Bird A, Hutzler D, Montgomery W. Tumor necrosis factor-alpha and hematopoietic progenitors: effects of tumor necrosis factor on the growth of erythroid progenitors CFU-E and BFU-E and the hematopoietic cell lines K562, HL60, and HEL cells. Exp Hematol 1987; 15:928.
  179. Broxmeyer HE, Williams DE, Lu L, et al. The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: synergism of tumor necrosis factor and interferon-gamma. J Immunol 1986; 136:4487.
  180. Furmanski P, Johnson CS. Macrophage control of normal and leukemic erythropoiesis: identification of the macrophage-derived erythroid suppressing activity as interleukin-1 and the mediator of its in vivo action as tumor necrosis factor. Blood 1990; 75:2328.