UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®

Medline ® Abstracts for References 43,44

of 'Reactive airways dysfunction syndrome and irritant-induced asthma'

43
TI
Neutrophils mediate airway hyperresponsiveness after chlorine-induced airway injury in the mouse.
AU
McGovern TK, Goldberger M, Allard B, Farahnak S, Hamamoto Y, O'Sullivan M, Hirota N, Martel G, Rousseau S, Martin JG
SO
Am J Respir Cell Mol Biol. 2015 Apr;52(4):513-22.
 
Chlorine gas (Cl2) inhalation causes oxidative stress, airway epithelial damage, airway hyperresponsiveness (AHR), and neutrophilia. We evaluated the effect of neutrophil depletion on Cl2-induced AHR and its effect on the endogenous antioxidant response, and if eosinophils or macrophages influence Cl2-induced AHR. We exposed male Balb/C mice to 100 ppm Cl2 for 5 minutes. We quantified inflammatory cell populations in bronchoalveolar lavage (BAL), the antioxidant response in lung tissue by quantitative PCR, and nuclear factor (erythroid-derived 2)-like 2 (NRF2) nuclear translocation by immunofluorescence. In vitro, NRF2 nuclear translocation in response to exogenous hypochlorite was assessed using a luciferase assay. Anti-granulocyte receptor-1 antibody or anti-Ly6G was used to deplete neutrophils. The effects of neutrophil depletion on IL-13 and IL-17 were measured by ELISA. Eosinophils and macrophages were depleted using TRFK5 or clodronate-loaded liposomes, respectively. AHR was evaluated with the constant-phase model in response to inhaled aerosolized methacholine. Our results show that Cl2 exposure induced neutrophilia and increased expression of NRF2 mRNA, superoxide dismutase-1, and heme-oxygenase 1. Neutrophil depletion abolished Cl2-induced AHR in large conducting airways and prevented increases inantioxidant gene expression and NRF2 nuclear translocation. Exogenous hypochlorite administration resulted in increased NRF2 nuclear translocation in vitro. After Cl2 exposure, neutrophils occupied 22±7% of the luminal space in large airways. IL-17 in BAL was increased after Cl2, although this effect was not prevented by neutrophil depletion. Neither depletion of eosinophils nor macrophages prevented Cl2-induced AHR. Our data suggest the ability of neutrophils to promote Cl2-induced AHR is dependent on increases in oxidative stress and occupation of luminal space in large airways.
AD
Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada.
PMID
44
TI
AEOL10150: a novel therapeutic for rescue treatment after toxic gas lung injury.
AU
McGovern T, Day BJ, White CW, Powell WS, Martin JG
SO
Free Radic Biol Med. 2011 Mar;50(5):602-8. Epub 2010 Dec 13.
 
New therapeutics designed as rescue treatments after toxic gas injury such as from chlorine (Cl(2)) are an emerging area of interest. We tested the effects of the metalloporphyrin catalytic antioxidant AEOL10150, a compound that scavenges peroxynitrite, inhibits lipid peroxidation, and has SOD and catalase-like activities, on Cl(2)-induced airway injury. Balb/C mice received 100ppm Cl(2) gas for 5 min. Four groups were studied: Cl(2) only, Cl(2) followed by AEOL10150 1 and 9 h after exposure, AEOL10150 only, and control. Twenty-four hours after Cl(2) gas exposure airway responsiveness to aerosolized methacholine (6.25-50mg/ml) was measured using a small-animal ventilator. Bronchoalveolar lavage (BAL) was performed to assess airway inflammation and protein. Whole lung tissue was assayed for 4-hydroxynonenal. In separate groups, lungs were collected at 72 h after Cl(2) injury to evaluate epithelial cell proliferation. Mice exposed to Cl(2) showed a significantly higher airway resistance compared to control, Cl(2)/AEOL10150, or AEOL10150-only treated animals in response to methacholine challenge. Eosinophils, neutrophils, and macrophages were elevated in BAL of Cl(2)-exposed mice. AEOL10150 attenuated the increases in neutrophils and macrophages. AEOL10150 prevented Cl(2)-induced increase in BAL fluid protein. Chlorine induced an increase in the number of proliferating airwayepithelial cells, an effect AEOL10150 attenuated. 4-Hydroxynonenal levels in the lung were increased after Cl(2) and this effect was prevented with AEOL10150. AEOL10150 is an effective rescue treatment for Cl(2)-induced airway hyperresponsiveness, airway inflammation, injury-induced airway epithelial cell regeneration, and oxidative stress.
AD
Meakins Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H2X 2P2, Canada.
PMID