Official reprint from UpToDate®
www.uptodate.com ©2015 UpToDate®

Prognosis and treatment of interstitial lung disease in systemic sclerosis (scleroderma)

John Varga, MD
Section Editors
Talmadge E King, Jr, MD
John S Axford, DSc, MD, FRCP, FRCPCH
Deputy Editor
Helen Hollingsworth, MD


Interstitial lung disease (ILD) is a frequent complication of systemic sclerosis (SSc) that is often progressive and has a poor prognosis [1]. In a retrospective study of 619 patients with SSc, 40 percent of patients had a restrictive ventilatory defect (suggesting interstitial lung disease, ILD) either alone or in combination with pulmonary arterial hypertension [2]. Herein, we discuss the prognosis and treatment of SSc-associated ILD.

The clinical presentation and diagnosis of SSc lung disease and the treatment of SSc and SSc-associated pulmonary arterial hypertension are discussed separately. (See "Clinical manifestations, evaluation, and diagnosis of interstitial lung disease in systemic sclerosis (scleroderma)" and "Overview of pulmonary complications of systemic sclerosis (scleroderma)" and "Overview of the treatment and prognosis of systemic sclerosis (scleroderma) in adults" and "Pulmonary arterial hypertension in systemic sclerosis (scleroderma): Definition, classification, risk factors, screening, and prognosis".)


The term ILD is broadly used to describe a heterogeneous group of disorders that are classified together because of similar clinical, radiographic, physiologic, or pathologic manifestations.

In the vast majority of patients with SSc-associated ILD, the lung injury is characterized by a pattern termed nonspecific interstitial pneumonia (NSIP) [3]. Histopathologically, NSIP is characterized by varying degrees of pulmonary inflammation and fibrosis, with some forms being primarily inflammatory (cellular NSIP) and others primarily fibrotic (fibrotic NSIP). Most investigators believe that cellular NSIP is the early stage of fibrotic NSIP. Although NSIP may have significant fibrosis, it is usually of uniform temporality. Fibroblastic foci and honeycombing, if present, are rare. (See "Idiopathic interstitial pneumonias: Clinical manifestations and pathology", section on 'Nonspecific interstitial pneumonia'.)

In a minority of patients with SSc-associated ILD, the histopathologic pattern is that of usual interstitial pneumonia (UIP). This pattern is characterized by a non-uniform distribution of alternating zones of dense fibrosis, fibroblast foci, scant inflammation, normal lung, and honeycomb change.


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Sep 2015. | This topic last updated: Mar 10, 2015.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2015 UpToDate, Inc.
  1. Herzog EL, Mathur A, Tager AM, et al. Review: interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: how similar and distinct? Arthritis Rheumatol 2014; 66:1967.
  2. Chang B, Wigley FM, White B, Wise RA. Scleroderma patients with combined pulmonary hypertension and interstitial lung disease. J Rheumatol 2003; 30:2398.
  3. King TE Jr. Clinical advances in the diagnosis and therapy of the interstitial lung diseases. Am J Respir Crit Care Med 2005; 172:268.
  4. Altman RD, Medsger TA Jr, Bloch DA, Michel BA. Predictors of survival in systemic sclerosis (scleroderma). Arthritis Rheum 1991; 34:403.
  5. Steen VD, Medsger TA Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum 2000; 43:2437.
  6. Bouros D, Wells AU, Nicholson AG, et al. Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome. Am J Respir Crit Care Med 2002; 165:1581.
  7. Steen VD, Conte C, Owens GR, Medsger TA Jr. Severe restrictive lung disease in systemic sclerosis. Arthritis Rheum 1994; 37:1283.
  8. Highland KB, Silver RM. New developments in scleroderma interstitial lung disease. Curr Opin Rheumatol 2005; 17:737.
  9. Al-Dhaher FF, Pope JE, Ouimet JM. Determinants of morbidity and mortality of systemic sclerosis in Canada. Semin Arthritis Rheum 2010; 39:269.
  10. Mathai SC, Hummers LK, Champion HC, et al. Survival in pulmonary hypertension associated with the scleroderma spectrum of diseases: impact of interstitial lung disease. Arthritis Rheum 2009; 60:569.
  11. Goh NS, Veeraraghavan S, Desai SR, et al. Bronchoalveolar lavage cellular profiles in patients with systemic sclerosis-associated interstitial lung disease are not predictive of disease progression. Arthritis Rheum 2007; 56:2005.
  12. Harrison NK, Glanville AR, Strickland B, et al. Pulmonary involvement in systemic sclerosis: the detection of early changes by thin section CT scan, bronchoalveolar lavage and 99mTc-DTPA clearance. Respir Med 1989; 83:403.
  13. Strange C, Bolster MB, Roth MD, et al. Bronchoalveolar lavage and response to cyclophosphamide in scleroderma interstitial lung disease. Am J Respir Crit Care Med 2008; 177:91.
  14. Tashkin DP, Elashoff R, Clements PJ, et al. Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med 2006; 354:2655.
  15. Steen VD, Lanz JK Jr, Conte C, et al. Therapy for severe interstitial lung disease in systemic sclerosis. A retrospective study. Arthritis Rheum 1994; 37:1290.
  16. Hoyles RK, Ellis RW, Wellsbury J, et al. A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum 2006; 54:3962.
  17. Nannini C, West CP, Erwin PJ, Matteson EL. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and interstitial lung disease: a systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res Ther 2008; 10:R124.
  18. Silver RM, Warrick JH, Kinsella MB, et al. Cyclophosphamide and low-dose prednisone therapy in patients with systemic sclerosis (scleroderma) with interstitial lung disease. J Rheumatol 1993; 20:838.
  19. Johnson MA, Kwan S, Snell NJ, et al. Randomised controlled trial comparing prednisolone alone with cyclophosphamide and low dose prednisolone in combination in cryptogenic fibrosing alveolitis. Thorax 1989; 44:280.
  20. White B, Moore WC, Wigley FM, et al. Cyclophosphamide is associated with pulmonary function and survival benefit in patients with scleroderma and alveolitis. Ann Intern Med 2000; 132:947.
  21. Goldin J, Elashoff R, Kim HJ, et al. Treatment of scleroderma-interstitial lung disease with cyclophosphamide is associated with less progressive fibrosis on serial thoracic high-resolution CT scan than placebo: findings from the scleroderma lung study. Chest 2009; 136:1333.
  22. Roth MD, Tseng CH, Clements PJ, et al. Predicting treatment outcomes and responder subsets in scleroderma-related interstitial lung disease. Arthritis Rheum 2011; 63:2797.
  23. Khanna D, Yan X, Tashkin DP, et al. Impact of oral cyclophosphamide on health-related quality of life in patients with active scleroderma lung disease: results from the scleroderma lung study. Arthritis Rheum 2007; 56:1676.
  24. Martinez FJ, McCune WJ. Cyclophosphamide for scleroderma lung disease. N Engl J Med 2006; 354:2707.
  25. Tashkin DP, Elashoff R, Clements PJ, et al. Effects of 1-year treatment with cyclophosphamide on outcomes at 2 years in scleroderma lung disease. Am J Respir Crit Care Med 2007; 176:1026.
  26. Várai G, Earle L, Jimenez SA, et al. A pilot study of intermittent intravenous cyclophosphamide for the treatment of systemic sclerosis associated lung disease. J Rheumatol 1998; 25:1325.
  27. Giacomelli R, Valentini G, Salsano F, et al. Cyclophosphamide pulse regimen in the treatment of alveolitis in systemic sclerosis. J Rheumatol 2002; 29:731.
  28. Airò P, Danieli E, Parrinello G, et al. Intravenous cyclophosphamide therapy for systemic sclerosis. A single-center experience and review of the literature with pooled analysis of lung function test results. Clin Exp Rheumatol 2004; 22:573.
  29. Tzelepis GE, Plastiras SC, Karadimitrakis SP, Vlachoyiannopoulos PG. Determinants of pulmonary function improvement in patients with scleroderma and interstitial lung disease. Clin Exp Rheumatol 2007; 25:734.
  30. Bérezné A, Ranque B, Valeyre D, et al. Therapeutic strategy combining intravenous cyclophosphamide followed by oral azathioprine to treat worsening interstitial lung disease associated with systemic sclerosis: a retrospective multicenter open-label study. J Rheumatol 2008; 35:1064.
  31. Pakas I, Ioannidis JP, Malagari K, et al. Cyclophosphamide with low or high dose prednisolone for systemic sclerosis lung disease. J Rheumatol 2002; 29:298.
  32. Furst DE, Tseng CH, Clements PJ, et al. Adverse events during the Scleroderma Lung Study. Am J Med 2011; 124:459.
  33. Dheda K, Lalloo UG, Cassim B, Mody GM. Experience with azathioprine in systemic sclerosis associated with interstitial lung disease. Clin Rheumatol 2004; 23:306.
  34. Nadashkevich O, Davis P, Fritzler M, Kovalenko W. A randomized unblinded trial of cyclophosphamide versus azathioprine in the treatment of systemic sclerosis. Clin Rheumatol 2006; 25:205.
  35. HUGHES DT, LEE FI. Lung function in patients with systemic sclerosis. Thorax 1963; 18:16.
  36. Kallenberg CG, Jansen HM, Elema JD, The TH. Steroid-responsive interstitial pulmonary disease in systemic sclerosis. Monitoring by bronchoalveolar lavage. Chest 1984; 86:489.
  37. NICE CM Jr, MENON AN, RIGLER LG. Pulmonary manifestations in collagen diseases. Am J Roentgenol Radium Ther Nucl Med 1959; 81:264.
  38. Wells AU, Hansell DM, Rubens MB, et al. The predictive value of appearances on thin-section computed tomography in fibrosing alveolitis. Am Rev Respir Dis 1993; 148:1076.
  40. Rossi GA, Bitterman PB, Rennard SI, et al. Evidence for chronic inflammation as a component of the interstitial lung disease associated with progressive systemic sclerosis. Am Rev Respir Dis 1985; 131:612.
  41. SULLIVAN MA, MILLER DK. Pulmonary manifestations in collagen disease. Arch Intern Med 1962; 110:769.
  42. Dines DE. Pulmonary disease of vascular origin. Dis Chest 1968; 54:3.
  43. Stratton RJ, Wilson H, Black CM. Pilot study of anti-thymocyte globulin plus mycophenolate mofetil in recent-onset diffuse scleroderma. Rheumatology (Oxford) 2001; 40:84.
  44. Liossis SN, Bounas A, Andonopoulos AP. Mycophenolate mofetil as first-line treatment improves clinically evident early scleroderma lung disease. Rheumatology (Oxford) 2006; 45:1005.
  45. Swigris JJ, Olson AL, Fischer A, et al. Mycophenolate mofetil is safe, well tolerated, and preserves lung function in patients with connective tissue disease-related interstitial lung disease. Chest 2006; 130:30.
  46. Simeón-Aznar CP, Fonollosa-Plá V, Tolosa-Vilella C, et al. Effect of mycophenolate sodium in scleroderma-related interstitial lung disease. Clin Rheumatol 2011; 30:1393.
  47. Saketkoo LA, Espinoza LR. Experience of mycophenolate mofetil in 10 patients with autoimmune-related interstitial lung disease demonstrates promising effects. Am J Med Sci 2009; 337:329.
  48. Koutroumpas A, Ziogas A, Alexiou I, et al. Mycophenolate mofetil in systemic sclerosis-associated interstitial lung disease. Clin Rheumatol 2010; 29:1167.
  49. Mendoza FA, Nagle SJ, Lee JB, Jimenez SA. A prospective observational study of mycophenolate mofetil treatment in progressive diffuse cutaneous systemic sclerosis of recent onset. J Rheumatol 2012; 39:1241.
  50. Zamora AC, Wolters PJ, Collard HR, et al. Use of mycophenolate mofetil to treat scleroderma-associated interstitial lung disease. Respir Med 2008; 102:150.
  51. Gerbino AJ, Goss CH, Molitor JA. Effect of mycophenolate mofetil on pulmonary function in scleroderma-associated interstitial lung disease. Chest 2008; 133:455.
  52. Guttadauria M, Diamond H, Kaplan D. Colchicine in the treatment of scleroderma. J Rheumatol 1977; 4:272.
  53. Sackner MA. Scleroderma. In: Modern Medical Monographs, Grune and Stratton, New York 1966. Vol 26, p.76.
  54. CONNER PK, BASHOUR FA. Cardiopulmonary changes in scleroderma. A physiologic study. Am Heart J 1961; 61:494.
  55. Steen VD, Owens GR, Redmond C, et al. The effect of D-penicillamine on pulmonary findings in systemic sclerosis. Arthritis Rheum 1985; 28:882.
  56. Böni A, Pavelka K, Kludas M. [Treatment of progressive scleroderma with D-penicillamine (Metalcaptase)]. Munch Med Wochenschr 1969; 111:1580.
  57. de Clerck LS, Dequeker J, Francx L, Demedts M. D-penicillamine therapy and interstitial lung disease in scleroderma. A long-term followup study. Arthritis Rheum 1987; 30:643.
  58. Clements PJ, Furst DE, Wong WK, et al. High-dose versus low-dose D-penicillamine in early diffuse systemic sclerosis: analysis of a two-year, double-blind, randomized, controlled clinical trial. Arthritis Rheum 1999; 42:1194.
  59. Rosas V, Conte JV, Yang SC, et al. Lung transplantation and systemic sclerosis. Ann Transplant 2000; 5:38.
  60. Massad MG, Powell CR, Kpodonu J, et al. Outcomes of lung transplantation in patients with scleroderma. World J Surg 2005; 29:1510.
  61. Schachna L, Medsger TA Jr, Dauber JH, et al. Lung transplantation in scleroderma compared with idiopathic pulmonary fibrosis and idiopathic pulmonary arterial hypertension. Arthritis Rheum 2006; 54:3954.
  62. Saggar R, Khanna D, Furst DE, et al. Systemic sclerosis and bilateral lung transplantation: a single centre experience. Eur Respir J 2010; 36:893.
  63. Bernstein EJ, Peterson ER, Sell JL, et al. Survival of adults with systemic sclerosis following lung transplantation: a nationwide cohort study. Arthritis Rheumatol 2015; 67:1314.
  64. Burt RK, Shah SJ, Dill K, et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 2011; 378:498.
  65. Bargagli E, Galeazzi M, Bellisai F, et al. Infliximab treatment in a patient with systemic sclerosis associated with lung fibrosis and pulmonary hypertension. Respiration 2008; 75:346.
  66. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004; 15:255.
  67. Rosenbloom J, Jiménez SA. Molecular ablation of transforming growth factor beta signaling pathways by tyrosine kinase inhibition: the coming of a promising new era in the treatment of tissue fibrosis. Arthritis Rheum 2008; 58:2219.
  68. Distler JH, Jüngel A, Huber LC, et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum 2007; 56:311.
  69. van Daele PL, Dik WA, Thio HB, et al. Is imatinib mesylate a promising drug in systemic sclerosis? Arthritis Rheum 2008; 58:2549.
  70. Khanna D, Saggar R, Mayes MD, et al. A one-year, phase I/IIa, open-label pilot trial of imatinib mesylate in the treatment of systemic sclerosis-associated active interstitial lung disease. Arthritis Rheum 2011; 63:3540.
  71. Spiera RF, Gordon JK, Mersten JN, et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis 2011; 70:1003.
  72. Daoussis D, Liossis SN, Tsamandas AC, et al. Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 2010; 49:271.
  73. Lafyatis R, Kissin E, York M, et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum 2009; 60:578.
  74. Keir GJ, Maher TM, Hansell DM, et al. Severe interstitial lung disease in connective tissue disease: rituximab as rescue therapy. Eur Respir J 2012; 40:641.