UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2015 UpToDate®

Prevention and treatment of measles

Authors
Hayley Gans, MD
Yvonne A Maldonado, MD
Section Editors
Martin S Hirsch, MD
Sheldon L Kaplan, MD
Deputy Editor
Elinor L Baron, MD, DTMH

INTRODUCTION

Measles is a highly contagious viral infection characterized by fever and exanthem [1]. Infection with measles is highly preventable by existing vaccines.

Control measures for the prevention and spread of measles and treatment modalities for the virus will be reviewed here. The epidemiology, aims for global eradication, clinical manifestations, and diagnosis are discussed separately. (See "Epidemiology and transmission of measles" and "Clinical manifestations and diagnosis of measles".)

PREVENTION OF MEASLES

Vaccination — Measles vaccination has markedly reduced the incidence of measles virus infection and is one of the most successful global public health interventions; it prevents millions of deaths annually, primarily among infants and young children [2,3].

Measles vaccination has led to interruption of measles virus transmission in the developed world and affords protection to unvaccinated individuals via herd immunity. Measles vaccination is also important for preventing severe sequelae of measles virus infection as well as immunosuppression, which is associated with secondary infection [4,5]. (See "Clinical manifestations and diagnosis of measles".)

In low-incidence countries, measles continue to occur via importation of virus by travelers. The majority of measles cases (>80 percent) occur among unvaccinated individuals [6,7]. For this reason, maintenance of herd immunity is critical; otherwise, a single imported case can result in large measles outbreaks. To disrupt broad transmission, herd immunity must be maintained above 85 to 95 percent [8]. Two doses of measles vaccine are required in children for ongoing elimination and to maintain herd immunity [9]. (See "Epidemiology and transmission of measles".)

                                  

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Jun 2015. | This topic last updated: Jul 8, 2015.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2015 UpToDate, Inc.
References
Top
  1. Moss WJ, Griffin DE. Measles. Lancet 2012; 379:153.
  2. Perry RT, Gacic-Dobo M, Dabbagh A, et al. Global control and regional elimination of measles, 2000-2012. MMWR Morb Mortal Wkly Rep 2014; 63:103.
  3. Higgins JPT, Soares-Weiser K, Reingold A. Systematic review of the non-specific effects of BCG, DTP and measles containing vaccines. World Health Organization, Geneva 2014. http://www.who.int/immunization/sage/meetings/2014/april/3_NSE_Epidemiology_review_Report_to_SAGE_14_Mar_FINAL.pdf.
  4. Bellini WJ, Rota JS, Lowe LE, et al. Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 2005; 192:1686.
  5. Mina MJ, Metcalf CJ, de Swart RL, et al. Vaccines. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science 2015; 348:694.
  6. Centers for Disease Control and Prevention (CDC). Measles: United States, January--May 20, 2011. MMWR Morb Mortal Wkly Rep 2011; 60:666.
  7. Clemmons NS, Gastanaduy PA, Fiebelkorn AP, et al. Measles - United States, January 4-April 2, 2015. MMWR Morb Mortal Wkly Rep 2015; 64:373.
  8. Katz SL, Hinman AR. Summary and conclusions: measles elimination meeting, 16-17 March 2000. J Infect Dis 2004; 189 Suppl 1:S43.
  9. Centers for Disease Control (CDC). Measles prevention. MMWR Morb Mortal Wkly Rep 1989; 38 Suppl 9:1.
  10. Greenaway C, Dongier P, Boivin JF, et al. Susceptibility to measles, mumps, and rubella in newly arrived adult immigrants and refugees. Ann Intern Med 2007; 146:20.
  11. Use of Combination Measles, Mumps, Rubella, and Varicella Vaccine: Recommendations of the Advisory Committee on Immuniation Practices http://www.cdc.gov/mmwr/pdf/rr/rr5903.pdf.
  12. http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5903a1.htm?s_cid=rr5903a1_e#box (Accessed on October 26, 2011).
  13. Low N, Bavdekar A, Jeyaseelan L, et al. A randomized, controlled trial of an aerosolized vaccine against measles. N Engl J Med 2015; 372:1519.
  14. Watson JC, Hadler SC, Dykewicz CA, et al. Measles, mumps, and rubella--vaccine use and strategies for elimination of measles, rubella, and congenital rubella syndrome and control of mumps: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 1998; 47:1.
  15. Fowlkes A, Witte D, Beeler J, et al. Persistence of vaccine-induced measles antibody beyond age 12 months: a comparison of response to one and two doses of Edmonston-Zagreb measles vaccine among HIV-infected and uninfected children in Malawi. J Infect Dis 2011; 204 Suppl 1:S149.
  16. Watson JC, Pearson JA, Markowitz LE, et al. An evaluation of measles revaccination among school-entry-aged children. Pediatrics 1996; 97:613.
  17. Epidemiology and Prevention of Vaccine-Preventable Diseases (The Pink Book), 12th ed, Atkinson W, Wolfe C, Hamborsky J. (Eds), The Public Health Foundation, Washington, DC 2011.
  18. Wolfson LJ, Strebel PM, Gacic-Dobo M, et al. Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 2007; 369:191.
  19. Talley L, Salama P. Short report: assessing field vaccine efficacy for measles in famine-affected rural Ethiopia. Am J Trop Med Hyg 2003; 68:545.
  20. Kaninda AV, Legros D, Jataou IM, et al. Measles vaccine effectiveness in standard and early immunization strategies, Niger, 1995. Pediatr Infect Dis J 1998; 17:1034.
  21. Akramuzzaman SM, Cutts FT, Hossain MJ, et al. Measles vaccine effectiveness and risk factors for measles in Dhaka, Bangladesh. Bull World Health Organ 2002; 80:776.
  22. Cutts FT, Grabowsky M, Markowitz LE. The effect of dose and strain of live attenuated measles vaccines on serological responses in young infants. Biologicals 1995; 23:95.
  23. He H, Chen E, Chen H, et al. Similar immunogenicity of measles-mumps-rubella (MMR) vaccine administrated at 8 months versus 12 months age in children. Vaccine 2014; 32:4001.
  24. Centers for Disease Control and Prevention (CDC). Recommendations of the Advisory Committee on Immunization Practices: revised recommendations for routine poliomyelitis vaccination. MMWR Morb Mortal Wkly Rep 1999; 48:590.
  25. World Health Organization. Weekly epidemiological record: Measles vaccines: WHO position paper. 2009; 35(84):349. www.who.int/wer/2009/wer8435.pdfSimilar (Accessed on February 10, 2012).
  26. Papania M, Baughman AL, Lee S, et al. Increased susceptibility to measles in infants in the United States. Pediatrics 1999; 104:e59.
  27. Maldonado YA, Lawrence EC, DeHovitz R, et al. Early loss of passive measles antibody in infants of mothers with vaccine-induced immunity. Pediatrics 1995; 96:447.
  28. Markowitz LE, Albrecht P, Rhodes P, et al. Changing levels of measles antibody titers in women and children in the United States: impact on response to vaccination. Kaiser Permanente Measles Vaccine Trial Team. Pediatrics 1996; 97:53.
  29. Leuridan E, Hens N, Hutse V, et al. Early waning of maternal measles antibodies in era of measles elimination: longitudinal study. BMJ 2010; 340:c1626.
  30. Embree JE, Datta P, Stackiw W, et al. Increased risk of early measles in infants of human immunodeficiency virus type 1-seropositive mothers. J Infect Dis 1992; 165:262.
  31. Scott S, Cumberland P, Shulman CE, et al. Neonatal measles immunity in rural Kenya: the influence of HIV and placental malaria infections on placental transfer of antibodies and levels of antibody in maternal and cord serum samples. J Infect Dis 2005; 191:1854.
  32. de Moraes-Pinto MI, Verhoeff F, Chimsuku L, et al. Placental antibody transfer: influence of maternal HIV infection and placental malaria. Arch Dis Child Fetal Neonatal Ed 1998; 79:F202.
  33. Martins CL, Garly ML, Balé C, et al. Protective efficacy of standard Edmonston-Zagreb measles vaccination in infants aged 4.5 months: interim analysis of a randomised clinical trial. BMJ 2008; 337:a661.
  34. Kim JJ. Human papillomavirus vaccination in the UK. BMJ 2008; 337:a842.
  35. Gans HA, Yasukawa LL, Sung P, et al. Measles humoral and cell-mediated immunity in children aged 5-10 years after primary measles immunization administered at 6 or 9 months of age. J Infect Dis 2013; 207:574.
  36. Uzicanin A, Zimmerman L. Field effectiveness of live attenuated measles-containing vaccines: a review of published literature. J Infect Dis 2011; 204 Suppl 1:S133.
  37. Gans HA, Yasukawa LL, Alderson A, et al. Humoral and cell-mediated immune responses to an early 2-dose measles vaccination regimen in the United States. J Infect Dis 2004; 190:83.
  38. Abzug MJ, Qin M, Levin MJ, et al. Immunogenicity, immunologic memory, and safety following measles revaccination in HIV-infected children receiving highly active antiretroviral therapy. J Infect Dis 2012; 206:512.
  39. Moss WJ, Scott S, Mugala N, et al. Immunogenicity of standard-titer measles vaccine in HIV-1-infected and uninfected Zambian children: an observational study. J Infect Dis 2007; 196:347.
  40. Morris LE, Posada R, Hickman CJ, et al. Susceptibility to Measles Among Perinatally HIV-Infected Adolescents and Young Adults. J Pediatric Infect Dis Soc 2015; 4:63.
  41. McLean HQ, Fiebelkorn AP, Temte JL, et al. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2013; 62:1.
  42. Kamboj M, Sepkowitz KA. Risk of transmission associated with live attenuated vaccines given to healthy persons caring for or residing with an immunocompromised patient. Infect Control Hosp Epidemiol 2007; 28:702.
  43. Brickman HF, Beaudry PH, Marks MI. The timing of tuberculin tests in relation to immunization with live viral vaccines. Pediatrics 1975; 55:392.
  44. http://www.cdc.gov/vaccinesafety/vaccines/mmrv/mmrv_qa.html (Accessed on August 07, 2013).
  45. American Academy of Pediatrics. Measles. In: Red Book: 2015 Report of the Committee on Infectious Diseases, 30th ed, Kimberlin DW, Brady MT, Jackson MA, Long SS (Eds), American Academy of Pediatrics, Elk Grove Village, IL 2015. p.535.
  46. Adverse Effects of Vaccines: Evidence and Causality, Stratton K, Ford A, Rusch E, Clayton EW (Eds), Institute of Medicine, 2011.
  47. Advisory Committee on Immunization Practices, Centers for Disease Control and Prevention (CDC). Immunization of health-care personnel: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2011; 60:1.
  48. Measles — United States, January-May 20, 2011 http://www.cdc.gov/mmwr/pdf/wk/mm6020.pdf (Accessed on November 15, 2011).
  49. Sheppeard V, Forssman B, Ferson MJ, et al. The effectiveness of prophylaxis for measles contacts in NSW. N S W Public Health Bull 2009; 20:81.
  50. Hutchins SS, Dezayas A, Le Blond K, et al. Evaluation of an early two-dose measles vaccination schedule. Am J Epidemiol 2001; 154:1064.
  51. Rice P, Young Y, Cohen B, Ramsay M. MMR immunisation after contact with measles virus. Lancet 2004; 363:569.
  52. King GE, Markowitz LE, Patriarca PA, Dales LG. Clinical efficacy of measles vaccine during the 1990 measles epidemic. Pediatr Infect Dis J 1991; 10:883.
  53. Barrabeig I, Rovira A, Rius C, et al. Effectiveness of measles vaccination for control of exposed children. Pediatr Infect Dis J 2011; 30:78.
  54. Measles: Epidemiology and Prevention of Vaccine-Preventable Diseases. The Pink Book: Course Textbook - 12th Edition (April 2011) http://www.cdc.gov/vaccines/pubs/pinkbook/meas.html (Accessed on November 15, 2011).
  55. Steingart KR, Thomas AR, Dykewicz CA, Redd SC. Transmission of measles virus in healthcare settings during a communitywide outbreak. Infect Control Hosp Epidemiol 1999; 20:115.
  56. Bolyard EA, Tablan OC, Williams WW, et al. Hospital Infection Control Advisory Committee. Guidelines for infection control in health-care personnel. Am J Infect Control 1998; 26:289.
  57. Immunization of health-care workers: recommendations of the Advisory Committee on Immunization Practices (ACIP) and the Hospital Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep 1997; 46:1.
  58. ACIP Provisional Recommendations for Measles-Mumps-Rubella (MMR) 'Evidence of Immunity' Requirements for Healthcare Personnel http://www.cdc.gov/vaccines/recs/provisional/downloads/mmr-evidence-immunity-Aug2009-508.pdf (Accessed on November 15, 2011).
  59. Raad II, Sherertz RJ, Rains CS, et al. The importance of nosocomial transmission of measles in the propagation of a community outbreak. Infect Control Hosp Epidemiol 1989; 10:161.
  60. http://www.cdc.gov/hicpac/pdf/isolation/Isolation2007.pdf?source=govdelivery (Accessed on February 12, 2015).
  61. Gershon AA. Measles Virus. In: Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases, 4th ed, Mandell GL, Bennett JE, Dolin R (Eds), Churchill Livingstone, Philadelphia 1995. p.1519.
  62. Bernstein DI, Schiff GM. Measles. In: Infectious Diseases, 2nd ed, Gorbach SL, Bartlett JG, Blacklow NR (Eds), WB Saunders Company, 1998. p.1296.
  63. Treating measles in children. World Health Organization, Geneva, 2004 updated. http://www.measlesinitiative.org/mi-files/Reports/Treatment/Treating%20Measles%20in%20Children.pdf.
  64. Garly ML, Balé C, Martins CL, et al. Prophylactic antibiotics to prevent pneumonia and other complications after measles: community based randomised double blind placebo controlled trial in Guinea-Bissau. BMJ 2006; 333:1245.
  65. Kabra SK, Lodha R, Hilton DJ. Antibiotics for preventing complications in children with measles. Cochrane Database Syst Rev 2008; :CD001477.
  66. http://www.who.int/wer/2009/wer8435.pdf#page=3 (Accessed on July 08, 2015).
  67. Barclay AJ, Foster A, Sommer A. Vitamin A supplements and mortality related to measles: a randomised clinical trial. Br Med J (Clin Res Ed) 1987; 294:294.
  68. Hussey GD, Klein M. A randomized, controlled trial of vitamin A in children with severe measles. N Engl J Med 1990; 323:160.
  69. Huiming Y, Chaomin W, Meng M. Vitamin A for treating measles in children. Cochrane Database Syst Rev 2005; :CD001479.
  70. http://whqlibdoc.who.int/hq/2009/WHO_IVB_09.03_eng.pdf (Accessed on July 08, 2015).
  71. http://www.cdc.gov/measles/hcp/index.html (Accessed on July 08, 2015).
  72. Pal G. Effects of ribavirin on measles. J Indian Med Assoc 2011; 109:666.
  73. Department of Immunization, Vaccines and Biologicals. Response to measles outbreaks in measles mortality reduction settings. World Health Organization, Geneva 2009. http://whqlibdoc.who.int/hq/2009/WHO_IVB_09.03_eng.pdf?ua=1.
  74. Forni AL, Schluger NW, Roberts RB. Severe measles pneumonitis in adults: evaluation of clinical characteristics and therapy with intravenous ribavirin. Clin Infect Dis 1994; 19:454.
  75. Krasinski K, Borkowsky W. Measles and measles immunity in children infected with human immunodeficiency virus. JAMA 1989; 261:2512.