The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.

Disclosures: Paul J Hesketh, MD Nothing to disclose. Reed E Drews, MD Nothing to disclose. David G Poplack, MD Nothing to disclose. Diane MF Savarese, MD Employee of UpToDate, Inc.

Contributor disclosures are reviewed for conflicts of interest by the editorial group. When found, these are addressed by vetting through a multi-level review process, and through requirements for references to be provided to support the content. Appropriately referenced content is required of all authors and must conform to UpToDate standards of evidence.

Conflict of interest policy

All topics are updated as new evidence becomes available and our peer review process is complete.
Literature review current through: Sep 2014. | This topic last updated: Oct 01, 2014.

INTRODUCTION — Few side effects of cancer treatment are more feared by the patient than nausea and vomiting. Although nausea and emesis (vomiting and/or retching) can result from surgery, opiates, or radiotherapy, chemotherapy-induced nausea and vomiting (CINV) is potentially the most severe and most distressing. Although significant progress has been made, CINV remains an important adverse effect of treatment.

Three distinct types of CINV have been defined, with important implications for both prevention and management:

Acute emesis, which most commonly begins within one to two hours of chemotherapy and usually peaks in the first four to six hours

Delayed emesis, occurring more than 24 hours after chemotherapy

Anticipatory emesis, occurring prior to treatment as a conditioned response in patients who have developed significant nausea and vomiting during previous cycles of chemotherapy

The objective of antiemetic therapy is the complete prevention of CINV, and this should be achievable in the majority of patients receiving chemotherapy, even with highly emetic agents (table 1 and table 2). The three categories of drugs with the highest therapeutic index for the management CINV include type three 5-hydroxytryptamine (5-HT3) receptor antagonists, the neurokinin-1 (NK1) receptor antagonists aprepitant and fosaprepitant, and glucocorticoids (table 3) [1].

The use of these drugs alone and in combination for antiemetic prophylaxis in patients receiving cancer chemotherapy will be reviewed here. The pathophysiology of CINV is discussed separately. (See "Pathophysiology and prediction of chemotherapy-induced nausea and vomiting" and "Characteristics of antiemetic drugs".)

CHEMOTHERAPY DRUG EMETOGENICITY — The management of CINV has been greatly facilitated by the development of classification schemes that reflect the likelihood of emesis developing following treatment with particular agents. A 1997 classification scheme gained broad acceptance and was utilized as the basis for treatment recommendations by guideline panels [2].

A modification of this schema was proposed at the 2004 Perugia Antiemetic Consensus Guideline meeting [3]. Chemotherapy agents were divided into four categories (table 1 and table 2):

Highly emetic — >90 percent risk of emesis

Moderately emetic — >30 to 90 percent risk of emesis

Low emetogenicity— 10 to 30 percent risk of emesis

Minimally emetic — <10 percent risk of emesis

This drug classification schema is utilized in both the updated antiemetic guidelines of the Multinational Association of Supportive Care in Cancer (MASCC) and the American Society of Clinical Oncology (ASCO) [4,5]. For combination regimens, the emetic level is determined by identifying the most emetic agent in the combination and then assessing the relative contribution of the other agents. As an example, cyclophosphamide and doxorubicin are both moderately emetogenic agents, but when given together, the regimen is highly emetic [2,4,5]. In updated antiemetic guidelines from ASCO, combined anthracycline and cyclophosphamide regimens have been reclassified as highly emetic [5].

The NCI Common Terminology Criteria for Adverse Events (CTCAE) grading schema for classifying the severity of CINV is presented in the table (table 4) [6].

ACUTE EMESIS — Extensive clinical trials have evaluated the 5-HT3 receptor antagonists, the NK1 receptor antagonists, and glucocorticoids in patients with acute and delayed CINV. These trials have focused primarily on patients receiving either highly or moderately emetic chemotherapy regimens. Although not all antiemetic regimens have been evaluated with all chemotherapy combinations, it is reasonable to extrapolate data to other chemotherapy regimens of comparable emetogenicity.

5-HT3 receptor antagonists — A key advance in the prevention of CINV was the development of selective type three 5-hydroxytryptamine (5-HT3) receptor antagonists, a drug class that has a high therapeutic index for prevention of CINV [1].

Randomized trials have shown that single-agent 5-HT3 receptor antagonists are more effective than less specific agents such as high-dose metoclopramide and as effective as the combination of high-dose metoclopramide and dexamethasone. When 5-HT3 antagonists are used in combination with dexamethasone, they are more effective than high-dose metoclopramide plus dexamethasone [7-10]. In addition to increased efficacy, these agents are easier to administer and are associated with significantly fewer serious side effects than the less specific serotonin inhibitor metoclopramide.

Four first-generation 5-HT3 receptor antagonists (dolasetron, granisetron, ondansetron, and tropisetron) and one second-generation agent (palonosetron) are available (table 3). An orally disintegrating formulation of ondansetron also is available that disperses rapidly when placed on the tongue and does not need to be swallowed with water [11]. This formulation may be particularly useful for patients with dysphagia or anorexia. A granisetron transdermal system is also available. (See 'Granisetron transdermal patch' below.)

First generation agents — A large number of randomized trials have clarified the properties of the first-generation 5-HT3 receptor antagonists. Key findings include the following:

The first-generation 5-HT3 receptor antagonists all appear equally effective at preventing CINV at the recommended doses. A meta-analysis has shown no clear advantage for either ondansetron or granisetron in the prophylaxis of acute or delayed emesis [12].

There is a plateau in therapeutic efficacy at a definable dose level for each drug, and further dose escalation does not improve outcome [13].

A single dose of a 5-HT3 receptor antagonist prior to chemotherapy is therapeutically equivalent to a multiple dose schedule [14-18].

The efficacy of 5-HT3 receptor antagonists is significantly improved when they are combined with glucocorticoids. (See 'Glucocorticoids' below.)

Oral formulations of these agents are as effective as intravenous formulations [13,19,20].

EKG interval changes and cardiac arrhythmias — EKG interval changes are a class effect of the first-generation 5-HT3 antagonists, including ondansetron, granisetron and dolasetron, although they have not been reported with transdermal granisetron [21]. (See 'Granisetron transdermal patch' below.) EKG interval changes appear to be most prominent one to two hours after a dose of these agents, are mostly small and clinically insignificant, and return to baseline within 24 hours [22-24]. However, potentially fatal cardiac arrhythmias, including torsade to pointes, have been reported in association with QTc prolongation [22,24-26]. The following sections describe the warnings/precautions regarding cardiotoxicity of these agents from the US FDA.

Dolasetron — Due to the risk of QTc prolongation from increased drug exposure the injection form of dolasetron is contraindicated for prophylaxis of CINV in both children and adults [27]. The risk of developing an abnormal heart rhythm with oral dolasetron is less than that seen with the injection form. However, there is still a potential risk.

The US Food and Drug Administration recommends the following precautions in patients receiving oral dolasetron [27]:

Potassium and magnesium levels should be assessed, and if abnormal, corrected before initiation of treatment with dolasetron. These electrolytes should be monitored after administration as clinically indicated.

Use electrocardiographic monitoring in patients with heart failure, a slow heart rate, underlying cardiac disease, the elderly, and in patients with renal impairment.

Use of dolasetron should be avoided in patients with congenital long-QT syndrome (table 5).

Drugs known to prolong the PR (eg, verapamil) or QRS interval (eg, flecainide, quinidine) should be avoided in patients taking dolasetron.

Because of these risks, dolasetron (both oral and IV) has been removed from the market in Canada, but remains available elsewhere.

Ondansetron — FDA has issued a warning about QTc prolongation and potentially fatal cardiac arrhythmias in patients treated with ondansetron [28]. QT prolongation occurs in a dose-dependent manner and specifically at a single IV dose of 32 mg. QT interval prolongation is expected to be greater with faster rate of infusion and larger doses for IV administration.

Revised labeling in the US includes a recommendation to limit single IV doses to no more than 16 mg, avoid use of ondansetron in patients with congenital long-QT syndrome, and to use ECG monitoring in certain patients, including those with hypokalemia or hypomagnesemia, heart failure, bradyarrhythmias, and in patients taking other medications that increase the risk of QTc prolongation (table 5).

Canadian guidelines that took effect in June 2014 place additional dosing restrictions on IV ondansetron to mitigate the risk of QT prolongation in the elderly [29]:

In patients ≥75 years of age, the initial IV dose should not exceed 8 mg.

For patients <age 75, the initial IV dose should not exceed 16 mg.

Subsequent IV doses must not exceed 8 mg and may be given four and eight hours after the initial dose.

All IV doses must be diluted in 50 to 100 mL of saline or other compatible fluid.

All IV doses must be infused over no less than 15 minutes.

Palonosetron — The second-generation agent palonosetron has a 30- to 100-fold higher affinity for the 5-HT3 receptor and a significantly longer half-life (40 hours) compared to first generation 5-HT3 receptor antagonists (table 3). In contrast to first-generation 5-HT3 antagonists, QTc prolongation has not been described with palonosetron [30].

As a single agent, palonosetron is more effective than ondansetron or dolasetron at preventing emesis due to moderately emetic chemotherapy [31-33]. This was illustrated by a multicenter trial in 592 patients, the majority of whom received doxorubicin and cyclophosphamide for breast cancer. Subjects were randomly assigned to a single IV dose of palonosetron at one of two dose levels (0.25 or 0.75 mg IV) or dolasetron (100 mg) [31]. More patients treated with palonosetron (0.25 mg) had complete control of both acute (63 versus 53 percent) and delayed emesis (54 versus 39) compared to dolasetron. A dose of 0.75 mg was not significantly superior compared to 0.25 mg.

When used in combination with glucocorticoids, palonosetron provides superior control of delayed emesis compared to first-generation 5-HT3 receptor antagonists combined with glucocorticoids:

In a phase III double-blind, double-dummy trial, 1143 patients receiving cisplatin or an anthracycline/cyclophosphamide combination were randomly assigned to dexamethasone plus either palonosetron or granisetron on day 1 prior to chemotherapy; all patients received dexamethasone on days 2 and 3 [34]. During the acute phase, the rate of complete control of CINV was similar (75 versus 73 percent with palonosetron and granisetron, respectively), but during the delayed phase (24 to 120 hours), complete responses occurred in significantly more patients receiving palonosetron (57 versus 45 percent). An unresolved question arising from this study design is whether the efficacy differences noted would have persisted with the addition of aprepitant, which all evidence-based guidelines recommend in this setting.

In a second phase III trial, in which 667 patients receiving cisplatin-based chemotherapy were randomly assigned to palonosetron (0.25 mg), palonosetron (0.75 mg) or ondansetron (32 mg), no significant differences in antiemetic control were noted between palonosetron and ondansetron [35]. Approximately two-thirds of patients received concomitant dexamethasone. In this subset of patients, complete response rates were numerically higher in both palonosetron arms compared to ondansetron during the first 24 hours. During the delayed (24 to 120 hours) phase, complete response was significantly higher on the 0.25 mg palonosetron arm compared to the ondansetron arm (42 versus 29 percent, p = 0.021).

Updated antiemetic guidelines from the American Society of Clinical Oncology (ASCO) recommend palonosetron as the preferred 5-HT3 antagonist for patients who receive moderately emetic chemotherapy [5].

A non-inferiority trial documented similarity between the oral and IV formulations and validated the correct dose (0.5 mg oral) (table 3) However, an oral formulation of palonosetron, which was approved by the FDA in 2008, was discontinued by the manufacturer and is not available anywhere.

Adverse effects — 5-HT3 receptor antagonists are generally safe, with a favorable side effect profile (predominantly low grade headache, malaise, and constipation).

A few reports have appeared suggesting a potential link between 5-HT3 receptor antagonists and the serotonin syndrome [36], which is caused when serotonin accumulates to high levels in vivo. Symptoms include confusion, agitation, restlessness, muscle twitching or stiffness, fever, sweating, fluctuations in heart rate and blood pressure, as well as nausea and/or vomiting, loss of consciousness, and coma; the syndrome can be fatal if not treated. (See "Serotonin syndrome".)

However, in nearly all cases, the use of concomitant medications with the 5-HT3 receptor antagonist has limited the ability to establish a definitive association. Nevertheless, caution is advised when using 5-HT3 receptor antagonists in combination with other drugs that affect serotonin levels (table 6).

Neurokinin-1 receptor antagonists — The introduction of the NK1 receptor (NK1R) antagonists aprepitant and fosaprepitant (a parenteral water-soluble prodrug of aprepitant that is effective as a one-day treatment (see 'One versus three-day administration' below)) have significantly improved the ability to prevent both acute and delayed CINV in patients receiving highly and moderately emetic chemotherapy (table 1 and table 2). Casopitant is another NK1R antagonist that can be given as a single day-one oral dose or in a mixed intravenous plus oral three day schedule in conjunction with dexamethasone and ondansetron; it is not yet commercially available in any country.

Efficacy — The benefit of combining an NK1R antagonist (aprepitant, fosaprepitant, or casopitant) with an 5-HT3 receptor antagonist plus a glucocorticoid for the prevention of acute CINV was addressed in a meta-analysis of 17 trials, totaling 8740 patients who were receiving highly or moderately emetogenic chemotherapy [37]. The addition of a NK1R antagonist to standard antiemetic therapy significantly improved the rate of complete response (CR, absence of emesis and no need for rescue antiemetics) in both the overall phase (during the first 120 hours of chemotherapy, 72 versus 54 percent, OR 0.51, 95% CI 0.46-0.57) and in the acute (first 24 hours, OR 0.56, 95% CI 0.48-0.65) as well as delayed phase (OR 0.48, 95% CI 0.42-0.56). For other secondary outcomes (rate of emesis, absence of nausea), the addition of an NK1R antagonist was also superior to the control arm. (See 'NK1 receptor antagonists' below.)

In subgroup analyses, benefit was seen for both highly emetogenic (CR, 73 versus 54 percent, OR 0.46, 95% CI 0.40-0.53) and moderately emetogenic chemotherapy (CR 71 versus 54 percent, OR 0.59, 95% CI 0.61-0.67). There appeared to be no differences in treatment efficacy for aprepitant/fosaprepitant and casopitant. The use of an NK1R antagonist did not increase the risk of diarrhea, although rates of hiccups and fatigue/asthenia were significantly higher. There was a suggestion that use of an NK1R antagonist increased the risk of a severe infection (6 versus 2 percent in a pooled analysis of three trials); however, this was not associated with an increased rate of neutropenia or febrile neutropenia.

Need for a 5-HT3 agent — Aprepitant and fosaprepitant improve control of CINV when combined with a 5-HT3 receptor antagonist and dexamethasone. Aprepitant plus dexamethasone alone is not as effective as the three-drug combination regimen. A 5-HT3 receptor antagonist remains necessary, at least in patients receiving cisplatin-based chemotherapy.

This was illustrated by a randomized trial in which patients receiving cisplatin chemotherapy were randomly assigned to the combination of aprepitant plus granisetron, granisetron, or aprepitant (on one of two schedules) [38]. All patients also received dexamethasone (20 mg orally) before cisplatin. While the three-drug combination blocked emesis in 80 percent of patients, dexamethasone plus either granisetron or aprepitant was effective in only 57 percent and 43 to 46 percent of cases, respectively.

One versus three-day administration — In the United States, both aprepitant and fosaprepitant are approved for use in three-day schedules. However, a single-day dosing schedule for fosaprepitant was approved by the FDA based upon the results of a phase III trial involving 2247 patients receiving single-day cisplatin (>70 mg/m2) based chemotherapy [39]. The control group received aprepitant administered in the standard three-day schedule along with ondansetron plus dexamethasone; this was compared to a single 150 mg dose of fosaprepitant combined with ondansetron on day 1 plus dexamethasone on days 2, 3, and 4. Complete antiemetic response rates were nearly identical between the aprepitant and fosaprepitant arms (72.3 versus 71.9 percent).

Issues related to inhibition of CYP3A4 — NK1 receptor antagonists such as aprepitant and fosaprepitant are moderate inhibitors of the cytochrome P450 enzyme CYP3A4, which is particularly important in drug metabolism [40].

CYP3A4 is responsible for the metabolism of glucocorticoids, and thus the dose of dexamethasone was reduced in clinical trials from 20 mg to 12 mg on day 1 and from 8 mg twice daily to 8 mg daily on days 2 and 3 when given concurrently with aprepitant [41-43]. This dose reduction applies only when glucocorticoids are used as antiemetics in conjunction with NK1 receptor antagonists, not when given as an antitumor component of a chemotherapy regimen [5].

Theoretically, aprepitant could decrease the clearance of drugs metabolized by CYP3A4 (cyclophosphamide, docetaxel, etoposide, irinotecan, vinca alkaloids), resulting in prolonged exposure and increased toxicity. However, there is no clinical evidence that this actually occurs [43,44].

Netupitant plus palonosetron (NEPA) — NEPA is a novel investigational oral fixed dose combination containing 300 mg of netupitant (a highly selective NK1 receptor antagonist) and 0.5 mg of palonosetron, a pharmacologically and clinically distinct 5-HT3 receptor antagonist. (See 'Palonosetron' above.)

At least comparable efficacy and safety of a single dose of NEPA on day 1 in conjunction with dexamethasone has been shown for control of both acute and delayed nausea and emesis after highly or moderately emetogenic chemotherapy compared to aprepitant for three days plus a 5-HT3 receptor antagonist and dexamethasone. [45,46]. These data are described in more detail below. (See 'NEPA' below.)

NEPA is not yet commercially available in any country.

Glucocorticoids — Short courses of glucocorticoids are widely used both as single agents for regimens with low risk of causing CINV and in combination with 5-HT3 receptor inhibitors and/or NK1 receptor antagonists for more emetic chemotherapy regimens. When used in this fashion, glucocorticoids have a high therapeutic index. Although the various glucocorticoids are probably equally effective when used at an appropriate dose, dexamethasone has been the most extensively evaluated and is the most widely used.

Single agent — Single agent dexamethasone has been compared to either placebo or no treatment in a number of randomized trials. A meta-analysis of 32 randomized trials evaluated 5613 patients who received moderately or highly emetogenic chemotherapy [47]. Dexamethasone was superior to placebo or no treatment for complete protection from both acute emesis (risk ratio [RR] 1.30) and delayed emesis (RR 1.30). However, dexamethasone as a single agent is insufficient to control CINV in most of these patients [5].

Combination with a 5-HT3 antagonist — Glucocorticoids alone represent insufficient first-line therapy for patients receiving either moderate or highly emetic chemotherapy agents. However, the antiemetic efficacy of the 5-HT3 receptor antagonists is significantly enhanced by the addition of a glucocorticoid [7,48-52].

Benefit for combined therapy was shown in a meta-analysis of 3791 patients enrolled in 22 randomized trials in which a 5-HT3 receptor antagonist plus dexamethasone was compared with a 5-HT3 antagonist plus placebo or no treatment in patients receiving moderate or highly emetic chemotherapy [47]. The pooled risk ratio for emesis protection was 1.25, indicating that the addition of dexamethasone increased the chance of no acute vomiting by 25 percent.

Dose — The impact of glucocorticoid dose was explored in a double-blind trial that randomly assigned 531 patients receiving cisplatin ≥50 mg/m2 to one of four intravenous doses of dexamethasone administered by a 15-minute infusion prior to cisplatin administration [53]. All patients received 8 mg of ondansetron as well. At doses of 20, 12, 8, and 4 mg, complete protection from vomiting was achieved in 83, 79, 69, and 69 percent of patients, respectively, and nausea was prevented in 71, 67, 61, and 61 percent.

The optimal dose of dexamethasone for highly to moderately emetic chemotherapy not containing cisplatin was evaluated by the Italian Group for Antiemetic Research [54]. In this trial, all patients received IV ondansetron and were randomized to one of three schedules of dexamethasone (either 8 or 24 mg IV prior to chemotherapy, or 8 mg IV before treatment followed by 4 mg every six hours). Rates of complete protection from acute or delayed emesis were similar among the groups, and the authors concluded that a single 8 mg IV dose prior to chemotherapy represented the appropriate dexamethasone regimen.

As noted above, the dose of dexamethasone is reduced when it is in combination with an NK1 receptor antagonist. (See 'Issues related to inhibition of CYP3A4' above.)

Other agents — Other agents that have been used in the treatment or prevention of CINV include phenothiazines (eg, prochlorperazine) metoclopramide, butyrophenones, and cannabinoids. These agents have a lower therapeutic index than the 5-HT3 receptor antagonists, aprepitant, and glucocorticoids for highly or moderately emetogenic chemotherapy regimens. Their use should be restricted to patients who are intolerant of or refractory to these first line agents. The benefits of synthetic oral cannabinoids in this setting remain controversial given the lack of evidence on their safety and efficacy [55-59]. Phenothiazines could be used as an alternative to single agent dexamethasone for those receiving chemotherapy with a low risk of emesis, if a glucocorticoid is contraindicated [5]. (See "Characteristics of antiemetic drugs" and 'Poor emesis control' below.)

Other drugs that may be useful as adjuncts to conventional antiemetic agents include lorazepam and diphenhydramine. These are not recommended as single agent antiemetics [5].

Use of the antipsychotic olanzapine for prevention of delayed nausea in patients receiving high-risk regimens is discussed below. (See 'Olanzapine' below.)

DELAYED EMESIS — Delayed emesis is defined by its occurrence more than 24 hours after chemotherapy. Although it is most common following high-dose cisplatin [60-62], delayed emesis may occur with other agents as well [18].

Regimens with a high risk of delayed emesis — The risk of delayed emesis after cisplatin (doses >70 mg/m2) ranges between 60 and 90 percent in the absence of effective prophylaxis. The risk of delayed emesis without any prophylaxis is estimated to be between 20 and 30 percent in patients receiving chemotherapy with an anthracycline plus cyclophosphamide [63].

Although the risk of delayed emesis has been best studied with high-dose cisplatin and the combination of doxorubicin plus cyclophosphamide, other moderately emetogenic agents are also associated with delayed emesis. These include doxorubicin ≥40 mg/m2 as a single agent or ≥25 mg/m2 in combination with other chemotherapeutic agents (especially cyclophosphamide), epirubicin ≥75 mg/m2 as a single agent or ≥50 mg/m2 when given in combination with other agents, combinations of cyclophosphamide ≥600 mg/m2 in combination with other drugs, carboplatin ≥300 mg/m2, oxaliplatin (as used in the FOLFOX [oxaliplatin plus short-term infusional fluorouracil and leucovorin] regimen for advanced colorectal cancer), and cisplatin at doses between 20 and 50 mg/m2 [18,64-67]. One study found that among 68 patients treated with one of these regimens who had no post-chemotherapy vomiting in the 24 hours after administration of prechemotherapy ondansetron and dexamethasone, 28 (41 percent) vomited in the next four days when no further antiemetics were given [18]. This frequency was reduced to 15 of 75 (20 percent) when ondansetron was continued.

Management — Many of the regimens associated with delayed emesis are classified as high-emetic risk, and guidelines from ASCO recommend the use of an NK1 receptor antagonist (either aprepitant on days 1 to 3 or fosaprepitant on day 1 only), plus a glucocorticoid on days 1 to 4, and a 5-HT3 receptor antagonist on day 1 (table 7) [5]. This regimen is effective against both acute and delayed emesis. The data supporting the individual components of this regimen are reviewed below.

Glucocorticoids — The value of maintenance therapy with oral glucocorticoids following treatment of acute CINV was shown in patients treated with cisplatin-based chemotherapy regimens in at least two randomized trials [60,62]. However, glucocorticoids alone are often not sufficient to prevent delayed emesis in patients receiving cisplatin.

NK1 receptor antagonists — The benefit of adding an NK1R antagonist to dexamethasone and a 5-HT3 antagonist for prevention of delayed emesis in patients receiving highly or moderately emetogenic chemotherapy was shown in a meta-analysis of 17 trials and described above [37]. Importantly, the addition of NK1R antagonists increased control rates in the overall phase (ie, 120 hours after chemotherapy) independently of whether ondansetron was used in the control arm beyond day 1 or not. However, patients who did not use ondansetron after day 1 seemed to have a greater benefit from the addition of the NK1R antagonist. (See 'Neurokinin-1 receptor antagonists' above.)

Versus glucocorticoids in patients receiving AC — As noted above, the doxorubicin plus cyclophosphamide (AC) regimen used in patients with breast cancer is considered to have a high risk of both acute and delayed emesis. As such, ASCO [5] and NCCN guidelines recommend aprepitant plus dexamethasone for the delayed period (dexamethasone alone if fosaprepitant is used on day 1). These recommendations represent an extrapolation from data from cisplatin trials, in which aprepitant plus dexamethasone in the delayed phase was better than dexamethasone alone [37]. The role of dexamethasone only in the delayed phase was directly addressed in a trial in which patients receiving AC for breast cancer were randomly assigned to oral dexamethasone (4 mg twice daily) or aprepitant (80 mg once daily) on days 2 and 3; all patients received IV palonosetron 0.25 mg, dexamethasone 8 mg, and aprepitant 125 mg on day 1 [68]. From days 2 to 5, the primary end point, complete response rates (defined as no vomiting and no rescue treatment) were the same with both antiemetic regimens (79.5 percent), as were secondary endpoints (which included no nausea). The incidence rates of insomnia (2.9 versus 0.4 percent) and heartburn (8.1 versus 3.6 percent) were significantly greater with dexamethasone on days 2 to 5.

These data suggest that for patients receiving aprepitant, a 5-HT3 antagonist, and dexamethasone therapy on day 1, dexamethasone is as effective in the delayed period as is aprepitant, and it could be considered in such patients, particularly in resource-limited settings. What is not clear is whether the combination of delayed phase aprepitant plus dexamethasone, or fosaprepitant on day 1 followed by delayed phase dexamethasone is even better than aprepitant on day 1 followed by dexamethasone alone for the delayed period.

Versus metoclopramide plus dexamethasone in patients receiving cisplatin — All of the trials examining the benefit of aprepitant to prevent delayed CINV used a three-day schedule of administration, in conjunction with oral glucocorticoids. Single day administration is approved for fosaprepitant but not aprepitant. (See 'Efficacy' above.)

The use of metoclopramide as a substitute for aprepitant on days 2 and 3 was addressed in a randomized trial in which 303 previously untreated patients received a cisplatin-based chemotherapy regimen [69]. All patients received the same regimen to prevent acute emesis on day 1 (aprepitant 125 mg, dexamethasone 8 mg, and palonosetron 0.25 mg) and were randomly assigned to dexamethasone 8 mg daily plus either metoclopramide 20 mg four times a day or aprepitant 80 mg daily, on days 2 and 3. The primary endpoint was complete response (no vomiting or rescue medication on days 2 through 5 after chemotherapy). In a preliminary report presented at the 2014 ASCO annual meeting, the complete response rate was not significantly different (80.3 versus 82.5 for aprepitant and metoclopramide, respectively) as were all secondary endpoints, including no nausea, and adverse events were not significantly different. The authors concluded that aprepitant was not superior to metoclopramide for control of delayed emesis after cisplatin when used in conjunction with dexamethasone after day 1 of chemotherapy.

Given that many institutions have switched over to day 1 single dose fosaprepitant followed by dexamethasone alone on days 2 to 3 rather than three-day aprepitant plus dexamethasone to prevent delayed emesis, the relevance of these results to current clinical practice is unclear.

NEPA — NEPA is a novel investigational oral fixed dose antiemetic combination containing 300 mg of netupitant (a highly selective NK1 receptor antagonist) and 0.5 mg of palonosetron, a pharmacologically and clinically distinct 5-HT3 receptor antagonist (see 'Palonosetron' above) In conjunction with a glucocorticoid, NEPA is an alternative to aprepitant and fosaprepitant-containing regimens for patients receiving highly emetogenic chemotherapy such as cisplatin or combined anthracycline plus cyclophosphamide.

Single dose NEPA in conjunction with dexamethasone for control of both acute and delayed nausea and emesis has been compared with palonosetron plus dexamethasone [45,70] and aprepitant plus a 5-HT3 receptor antagonist and dexamethasone [45,46] in three trials conducted in populations receiving either moderately or highly emetogenic chemotherapy:

In a phase II dose finding study, 694 patients receiving cisplatin-containing chemotherapy were randomly assigned to NEPA at one of three different oral doses (100, 200, or 300 mg) plus palonosetron 0.5 mg on day one, palonosetron only (0.5 mg), or standard three-day aprepitant plus IV ondansetron; all patients received dexamethasone on days 1 through 4 [45]. Each dose of NEPA provided superior prevention of CINV, with the highest NEPA dose showing the greatest incremental benefit (complete protection from emesis and no rescue medication needed through hour 120 in 87, 88, and 90 percent of patients treated with 100, 200, and 300 mg of netupitant, respectively, compared with 77 percent for palonosetron alone, and 87 percent for aprepitant plus 5-HT3 antagonist). Adverse events were comparable across groups.

Efficacy of NEPA over multiple cycles of chemotherapy was evaluated in a phase III randomized trial in which 413 patients receiving a variety of moderately (carboplatin, oxaliplatin, doxorubicin, cyclophosphamide, irinotecan, epirubicin, daunorubicin) or highly emetogenic (cisplatin, dacarbazine carmustine) chemotherapy were randomly assigned to NEPA given on day 1 with oral dexamethasone versus a three-day regimen of aprepitant plus palonosetron and dexamethasone [46]. In both groups, dexamethasone was administered on days 1 through 4 for highly emetogenic chemotherapy and on day 1 only for moderately emetogenic chemotherapy. During cycle 1, complete response rates (no emesis and no need for rescue medication through hour 120) were 81 versus 76 percent for NEPA and aprepitant/palonosetron, respectively, and antiemetic efficacy was maintained over multiple cycles. The NEPA group showed a small but consistent numerical advantage (2 to 7 percent) over aprepitant and palonosetron during all cycles. The incidence and type of adverse events was similar in both group.

These two trials compared NEPA versus a three-day aprepitant-containing regimen. Whether NEPA plus dexamethasone will be as effective as single day fosaprepitant-containing antiemetic regimens is not yet established. (See 'One versus three-day administration' above.)

The third trial compared NEPA versus palonosetron alone in 1455 patients receiving cyclophosphamide plus an anthracycline (either doxorubicin or epirubicin); all patients also received dexamethasone on day 1 only [70]. The percentage of patients with a complete response (through hour 120) was significantly higher with NEPA (74 versus 67 percent, p = 0.001). NEPA was well tolerated and had a similar safety profile to palonosetron.

NEPA is an effective and well-tolerated antiemetic with a novel formulation that provides a convenient means to administer both an NK1 receptor antagonist and a 5-HT3 receptor antagonist in a single oral dose. It is not yet available commercially in any country.

5-HT3 antagonists alone — Conflicting results have been described with the use of first generation 5-HT3 receptor antagonists as single agents for protection against delayed emesis [60,71-75]. Although some benefit has been seen when these agents are used as monotherapy, the benefit has not been as great as that seen with glucocorticoids. Furthermore, continuing a 5-HT3 receptor antagonist beyond 24 hours along with glucocorticoids did not confer additional benefit compared to corticosteroids alone. Thus, the use of the 5-HT3 receptor antagonists as a sole maneuver to prevent delayed emesis in patients receiving cisplatin is not recommended.

The second generation 5-HT3 receptor antagonist palonosetron seem to be superior to other 5-HT3 receptor antagonists for the treatment of delayed emesis due to cisplatin-based chemotherapy:

In a phase III trial of patients receiving cisplatin-based chemotherapy, palonosetron (at one of two doses, either 0.25 mg or 0.75 mg) yielded higher rates of emetic control compared to ondansetron in preventing delayed emesis (complete response rates of 45 and 48 versus 39 percent, respectively), although the results were not statistically significant [35]. However, in a subset analysis, palonosetron 0.25 mg was superior to ondansetron for control of delayed and overall emesis in patients receiving concomitant dexamethasone.

The superiority of palonosetron for prevention of delayed emesis was also shown in another phase III trial in which 1114 patients receiving cisplatin or an anthracycline/cyclophosphamide (AC) combination were randomly assigned to a single dose of palonosetron or granisetron 30 minutes prior to chemotherapy with all patients receiving dexamethasone for three days [34]. Significantly better control of delayed emesis was achieved in both the cisplatin and AC subgroups on the palonosetron arm (complete response 57 versus 45 percent with granisetron).

Although these results suggest the superiority of palonosetron over other 5-HT3 antagonists for the prevention of delayed emesis, it is unclear whether this difference would persist with the addition of an NK1 receptor antagonist. To date, there are no randomized trials in which the combination of palonosetron and an NK1 receptor antagonist has been compared to a first generation 5-HT3 receptor antagonist plus an NK1 receptor antagonist.

Olanzapine — Conventional antiemetics are more successful at preventing emesis than in preventing nausea, particularly delayed nausea. The superiority of the antipsychotic olanzapine over aprepitant for the prevention of delayed nausea was suggested in a phase III trial conducted in 247 patients receiving cisplatin or doxorubicin plus cyclophosphamide [76]. Patients were randomly assigned to olanzapine (10 mg orally on the day of chemotherapy, and then 10 mg once daily on days 2 through 4), or aprepitant (125 mg orally prior to chemotherapy, followed by 80 mg orally on days 2 and 3), both in combination with palonosetron (0.25 IV on the day of chemotherapy) plus dexamethasone. Dexamethasone (20 mg) was only given on the day of chemotherapy, while the aprepitant group received dexamethasone 12 mg on the day of chemotherapy followed by dexamethasone 4 mg twice daily on days 2 and 3.

Following cycle 1, rates of prevention of acute nausea (87 percent in both the olanzapine and aprepitant groups), and of complete control of acute (97 versus 87 percent) and delayed vomiting (77 versus 73 percent) were similar. However, patients treated with olanzapine had a significantly higher rate of nausea control in the delayed period (69 versus 38 percent). The results were maintained during cycles 2 to 4.

Superiority over extended duration dexamethasone was also suggested in a second trial involving 229 patients receiving moderately or highly emetogenic chemotherapy [77]. All patients received a 5-HT3 antagonist plus decadron on day 1, and they were randomly assigned to olanzapine 10 mg orally daily on days 1 to 5, or dexamethasone 10 mg IV once daily on days 2 to 5. Complete response rates for acute emesis were similar (91 versus 89 percent); the likelihood of a complete delayed response was higher with olanzapine (79 versus 57 percent), but this difference did not reach the level of statistical significance. Delayed nausea control was also significantly greater with olanzapine (70 versus 30 percent).

While these data are intriguing, these findings need to be replicated in a larger study. Olanzapine may also be useful for management of breakthrough emesis. (See 'Poor control of emesis' below.)

Moderate risk agents — The incidence of delayed emesis following treatment with moderate risk agents other than the combination of cyclophosphamide plus an anthracycline is not well characterized. Other cyclophosphamide or doxorubicin-based regimens, as well as carboplatin and oxaliplatin, can cause delayed emesis. (See "Pathophysiology and prediction of chemotherapy-induced nausea and vomiting", section on 'Delayed emesis'.)

The contribution of aprepitant to the control of delayed emesis with moderate risk agents was shown in a meta-analysis and is described above [37] (see 'Efficacy' above). Furthermore, benefit from the novel investigational oral fixed dose combination NEPA (netupitant plus palonosetron) in patients treated with a carboplatin-containing regimen was shown in one of the phase III registration trials [70].

Glucocorticoids are also consistently useful agents. The value of maintenance dexamethasone was demonstrated in a randomized placebo controlled trial of patients undergoing cyclophosphamide-based chemotherapy [61]. In this trial, 98 patients were given granisetron and dexamethasone before chemotherapy and randomized to receive either oral dexamethasone 4 mg twice daily as maintenance or no maintenance. Maintenance dexamethasone was associated with a higher rate of complete (57 versus 33 percent) and major control (33 versus 15 percent) of delayed emesis.

The 5-HT3 receptor antagonists also have activity as single agents for delayed emesis with cyclophosphamide-based chemotherapy [18]. However, there is no evidence that they are superior to dexamethasone alone or that combination therapy with dexamethasone is superior to dexamethasone alone [63,64].

A randomized trial of 708 patients receiving moderately emetogenic chemotherapy and concurrent antiemetics illustrates the relative roles of dexamethasone and 5-HT3 receptor antagonists in the management of delayed emesis [63]:

Patients without acute nausea or vomiting (the low-risk group) were randomized to receive dexamethasone (4 mg orally twice daily on days 2 through 5) plus ondansetron (8 mg orally twice daily on days 2 through 5), dexamethasone alone on the same schedule, or a placebo. Among these 618 patients, there was a complete absence of delayed nausea and vomiting in 92, 87, and 77 percent of patients in the combined therapy, dexamethasone, and placebo groups, respectively. Protection with dexamethasone alone or with dexamethasone plus ondansetron was better than that with placebo; however, the combination was not statistically superior to dexamethasone alone.

The key factor in preventing delayed emesis was the control of acute symptoms following chemotherapy. Patients who had either vomiting or moderate to severe nausea in the 24 hours following chemotherapy constituted a high-risk group. These 87 patients were randomly assigned to oral dexamethasone alone or in combination with ondansetron, at the same doses and schedules as in the low-risk group. Despite treatment, complete protection from delayed emesis or moderate to severe was achieved in only 41 and 23 percent of patients treated with the combination and dexamethasone, respectively.

The relative roles of palonosetron and aprepitant in controlling delayed nausea was studied in a randomized trial of 944 evaluable patients receiving primarily (95 percent) moderately emetogenic chemotherapy [78]. Palonosetron did not provide superior control of delayed nausea compared with granisetron, when both were provided on day 1 with dexamethasone, and prochlorperazine was administered on days 2 and 3. In addition, aprepitant was not more effective than prochlorperazine when both were combined with dexamethasone on days 2 and 3.

ANTICIPATORY EMESIS — Anticipatory emesis is a conditioned response that occurs in patients who experienced severe nausea and vomiting during prior cycles of chemotherapy [79]. It appears to be induced by sensory cues and cognitive anticipation of subsequent chemotherapy. Anticipatory nausea has also been described among patients who have a high expectation of developing nausea despite never having received chemotherapy [80].

The most effective means to prevent anticipatory nausea or emesis is to ensure good control of acute and delayed emesis, starting from the initial chemotherapy cycle (table 7). Once anticipatory emesis has been established, nonpharmacologic methods (eg, hypnosis, behavioral therapy with systemic desensitization) may be effective [81-83]. (See "Complementary and alternative therapies for cancer".)

Although few formal trials have been carried out, benzodiazepines before and during chemotherapy may be useful [84-86]. In one double-blind trial of 57 women undergoing adjuvant chemotherapy for primary breast cancer for example, the addition of low-dose alprazolam (0.5 mg to 2 mg/day) to a psychologic support program including progressive relaxation training was associated with a significantly reduced rate of anticipatory nausea compared to placebo (0 versus 18 percent) [85].

SPECIAL SITUATIONS

Consecutive day therapy with highly emetogenic agents — When moderately or highly emetogenic chemotherapy agents (eg, cisplatin, dacarbazine) are administered on several consecutive days, prophylaxis is more difficult. This may be due to anticipatory emesis on the subsequent days of therapy or to the compounding of acute and delayed effects of treatment. Updated ASCO antiemetic guidelines suggest that antiemetics appropriate for the emetogenic risk class of the chemotherapy be administered for each day of the chemotherapy and for two days after, if appropriate [5].

Trials conducted before the availability of NK1R antagonists suggested that repetitive daily dosing with a 5-HT3 receptor antagonist combined with dexamethasone was the best approach [87,88]. However, more recently, the benefit of adding aprepitant to a 5-HT3 antagonist and dexamethasone was shown in a small trial of 69 patients receiving a five-day cisplatin-containing chemotherapy regimen for germ cell cancer [89]. All patients received a 5-HT3 antagonist (other than palonosetron) once daily on days 1 through 5, plus dexamethasone 20 mg once daily on days 1 and 2, and were randomly assigned to aprepitant (125 mg on day 3, 80 mg on days 4 and 5) or no aprepitant. The group receiving aprepitant also received dexamethasone 4 mg twice daily on days 6, 7, and 8, while the placebo group received dexamethasone 8 mg twice daily on days 6 and 7 and 4 mg twice daily on day 8. A complete response (no emetic episodes and no use of rescue medication) was noted in significantly more patients receiving aprepitant (42 versus 13 percent), and the visual analog scale (VAS) score for nausea was numerically lower for aprepitant, although the difference compared to placebo was not statistically significant.

Although the authors provided a rationale for starting the NK1R on day 3 rather than on day 1, the optimal schedule for NK1R antagonists for patients receiving consecutive day therapy with highly emetogenic chemotherapy is unknown given the lack of comparative trials addressing this question. For regimens containing five days of cisplatin (eg, for testicular germ cell cancer), we suggest a daily dose of an oral 5-HT3 receptor antagonist (or granisetron transdermal patch, see below) plus dexamethasone, with the addition of aprepitant or fosaprepitant starting on day 1.

Granisetron transdermal patch — A transdermal preparation of granisetron is available (Sancuso®) that contains 34.3 mg of granisetron and is designed to deliver 3.1 mg of the drug every 24 hours for up to seven days. The efficacy of the granisetron patch relative to daily oral administration of granisetron was shown in a multinational randomized, double-blind, double-dummy controlled trial in which 641 patients receiving the first cycle of a multiday regimen of either moderately or highly emetogenic chemotherapy were randomly assigned to the patch (applied 24 to 48 hours before the first day of chemotherapy) plus a placebo capsule or to oral granisetron (2 mg daily, one hour prior to chemotherapy on each day of chemotherapy administration) plus a placebo patch [90]. Concurrent glucocorticoids, which were administered at the investigator's discretion, were given to about 70 percent of the patients in each arm.

The percentage of patients who had complete control of nausea and vomiting until 24 hours after the last chemotherapy dose was not worse with the transdermal patch (60 versus 65 percent with oral granisetron). Fewer than 1 percent of the patches became detached during treatment. In both groups, the most commonly reported toxicities were constipation and headache.

Based upon this trial, the granisetron transdermal system was approved in the US for the prevention of CINV in patients receiving moderately or highly emetogenic chemotherapy for up to five days. It is recommended that the patch be applied to the upper outer arm a minimum of 24 hours before chemotherapy and removed 24 hours or more after the last chemotherapy dose is administered. It can be worn for up to seven days, depending on the duration of the chemotherapy regimen.

Induction therapy for acute leukemia — High-dose cytarabine regimens (in which cytarabine is administered daily for five or seven days, often with an anthracycline) are the cornerstone of treatment for acute myeloid leukemia (AML). Few studies have addressed the issue of CINV and optimal prophylaxis in this setting [31,91,92]. Although data are lacking, a daily dose of a 5-HT3 receptor antagonist (eg, ondansetron 16 mg) with or without dexamethasone appears to be a reasonable option in this setting.

High-dose chemotherapy regimens — The use of high dose chemotherapy in association with a bone marrow or peripheral blood stem cell transplant presents a special challenge to achieving good antiemetic control. The chemotherapy agents employed are often of moderate to high emetogenic risk.

In addition, there are a number of potential factors that can contribute to an increased incidence and severity of CINV in this setting:

Higher doses of chemotherapy

Consecutive day administration

Prior treatment with chemotherapy

Inclusion of radiation therapy (especially total body irradiation), which has high emetogenic risk

Associated other medical conditions or medications that may cause emesis

There are few randomized trials specifically studying the issue of emesis in the high dose setting [93-96]. Most studies have focused on the combination of a 5-HT3 receptor antagonist and dexamethasone [97-100]. However, a role for aprepitant in this setting was suggested in a phase III trial in which 181 patients undergoing a preparative regimen for hematopoietic stem cell transplantation were randomly assigned to ondansetron plus dexamethasone and either aprepitant or placebo [101]. Significantly better emetic control was noted in patients who received aprepitant (no emesis for the entire study period in 73 versus 23 percent of the placebo group), although there were no differences between the groups in use of rescue antiemetics.

The 2011 updated antiemetic guidelines from ASCO suggested a 5-HT3 receptor antagonist plus dexamethasone with consideration of aprepitant in this setting [5].

Poor control of emesis — Despite the use of appropriate antiemetic prophylaxis, many patients experience clinically significant CINV. Before considering any change in the antiemetic regimen, it is important to exclude other disease- and medication-related causes for emesis. Examples include the following:

The use of opiate analgesics

Certain antibiotics (eg, erythromycin)

Central nervous system metastases

Gastrointestinal obstruction

Hypercalcemia

Abdominopelvic radiotherapy

Assuming these factors are excluded, it is important to ensure that the patient is receiving the antiemetic appropriate for the drug(s) being given (table 1 and table 2) and the correct dose (table 3). If the patient was receiving chemotherapy with low emetic risk and is experiencing poor emesis control, it is possible to adjust the regimen to that typically used for a higher risk group. The addition of a benzodiazepine may help to counter increased patient anxiety and possible anticipatory emesis.

The majority of patients who have breakthrough emesis have derived some benefit from the original antiemetic regimen employed. One or two episodes of emesis with cisplatin is less than ideal but still reflects substantial antiemetic efficacy. Thus, the original antiemetic regimens should usually be retained.

Additional agents can be added, including lorazepam or alprazolam, olanzapine, a dopaminergic antagonist (eg, prochlorperazine, thiethylperazine, haloperidol), or substituting high-dose intravenous metoclopramide for the 5-HT3 antagonist [5]. Superiority for olanzapine (10 mg orally daily for three days) over metoclopramide (10 mg orally three times daily for three days) for treatment of breakthrough nausea and vomiting was shown in a double-blind randomized trial involving 80 patients receiving highly emetogenic chemotherapy [102]. During the 72-hour observation period, significantly more patients receiving olanzapine had no recurrent emesis (70 versus 31 percent) and no nausea (68 versus 23 percent).

Another alternative is to switch to a different serotonin antagonist, since there may be incomplete cross-resistance between agents [103-105]. This approach was tested in a double-blind trial, in which patients who failed ondansetron plus dexamethasone in the first 24 hours following highly emetogenic chemotherapy were randomly assigned to continue the same treatment or switch to granisetron plus dexamethasone. There was a significantly higher rate of complete protection from emesis in the patients who switched to granisetron (47 versus 5 percent) [103].

In other cases, chemotherapy can be altered. Alterations could include single day instead of multiple day therapy, lengthening infusion time, or substituting a less emetogenic agent if such maneuvers do not compromise antitumor activity.

Cannabinoids and medical marijuana — The potential antiemetic utility of cannabinoids was first observed in scattered reports of improved emetic control in patients using marijuana during chemotherapy [106]. Two synthetic cannabinoids are available (dronabinol and nabilone), but antiemetic efficacy is modest at best, rigorous comparisons of either drug with the most effective antiemetic therapies are lacking, and adverse effects tend to be more intense and more frequent than with other rescue agents such as neuroleptics [107]. (See "Characteristics of antiemetic drugs", section on 'Cannabinoids'.)

The modest antiemetic activity of this class of agents combined with their relatively unfavorable side effect profile (vertigo, xerostomia, hypotension, dysphoria), especially in older patients, has limited their clinical utility. Nevertheless, guidelines from the National Comprehensive Cancer Network (NCCN), ASCO [5], and the MASCC [4] state that cannabinoids can be considered for refractory nausea and vomiting and as a rescue antiemetic.

The use of medical marijuana for refractory CINV is very controversial. Medical use of marijuana is legal in several countries, including the Netherlands and Canada. Despite legalization by several states, marijuana use is still illegal in the United States at the federal level (which considers marijuana a schedule I controlled substance), and individuals prescribing or using marijuana for medical use are at risk for prosecution [108].

While an early prospective uncontrolled pilot study from 1988 found that inhaled cannabis was effective in 78 percent of 56 patients who had inadequate control of nausea and vomiting with the conventional antiemetics that were available at that time [109], there have been no other clinical reports of efficacy of inhaled marijuana and there are no controlled clinical trials comparing marijuana versus other rescue strategies in patients who are refractory to modern antiemetics [110]. Furthermore, the use of marijuana is associated with adverse effects on the cardiovascular, respiratory, and central nervous systems, and uncertainty about increased risk of malignancy. (See "Cannabis use disorder: Epidemiology, comorbidity, and pathogenesis".)

Because of medical and legal concerns, the use of medical marijuana is not recommended for management of CINV, and is not included in the most recent guidelines for CINV from the NCCN, ASCO, or MASCC [58].

COMPLEMENTARY THERAPIES

Ginger — Conventional antiemetics are more successful at preventing emesis than in preventing nausea. The benefit of ginger (Zingiber officinale) as an aid to reduce nausea during chemotherapy was addressed in a randomized trial in which 744 patients who experienced nausea following any chemotherapy cycle were randomly assigned to placebo, or supplemental ginger (at doses of 0.5, 1.0 or 1.5 g twice daily) for six days, starting three days prior to the first day of the next two chemotherapy cycles [111]. All patients received a 5-HT3 receptor antagonist on day 1 of all cycles. Two-thirds of the enrolled patients were receiving chemotherapy for breast cancer.

All doses of ginger were associated with a significant reduction in acute nausea throughout day 1 of the chemotherapy cycles, although the largest reduction was seen with the 0.5 and 1.0 g doses. The authors concluded that ginger supplementation significantly aids in reduction of day 1 nausea during chemotherapy.

A benefit for ginger root in conjunction with ondansetron and dexamethasone was also shown in a placebo-controlled randomized trial of 57 children and young adults receiving cisplatin/doxorubicin chemotherapy for bone sarcoma [112]. Compared to conventional antiemetics, the addition of ginger (334 or 800 mg depending on the size of the patient) one hour before, and three and eight hours after the start of chemotherapy significantly reduced the incidence of both acute and delayed emesis.

However, in contrast to these results, a benefit for ginger in addition to conventional antiemetics (5-HT3 antagonists and/or aprepitant) could not be shown in a randomized, placebo-controlled phase II trial of 162 cancer patients who had suffered CINV during at least one prior cycle of chemotherapy [113]. In fact, patients who took ginger plus aprepitant had more severe acute nausea than did those who took only aprepitant.

Acupuncture and related therapies — Several techniques have been used to stimulate the pericardium 6 (P6 or neiguan) site, which is commonly thought to be useful in the management of chemotherapy-induced nausea and vomiting. These include manual stimulation with the insertion of fine needles (acupuncture), electrostimulation, and noninvasive pressure on the skin over the P6 pressure point (ie, acupressure). Unfortunately, interpretation of the results of randomized trials is hampered by a high risk of bias in most studies, and lack of standardization of treatment methods and comparison groups. A year 2013 systematic review of acupuncture in cancer care included 11 randomized trials in which nausea and vomiting were assessed; eight were considered to have a high risk of bias [114]. Only one trial [115] had a low risk of bias and was positive for short term benefit of electroacupuncture after chemotherapy for breast cancer. The authors concluded that based upon the single positive study with low risk of bias that acupuncture could be considered an appropriate adjunctive treatment for chemotherapy-induced nausea and vomiting but that additional studies were needed. (See "Complementary and alternative therapies for cancer", section on 'Nausea and vomiting'.)

Other nonpharmacologic strategies — Findings from randomized controlled trials of reasonable quality provide limited support for several nonpharmacologic methods to reduce CINV, including cognitive distraction (eg, playing video games during treatment), systematic desensitization (a cognitive approach using visualization and learned relaxation techniques), exercise, hypnosis, acupuncture, and transcutaneous electrical nerve stimulation [116,117]. (See "Complementary and alternative therapies for cancer" and "Acupuncture".)

INFORMATION FOR PATIENTS — UpToDate offers two types of patient education materials, “The Basics” and “Beyond the Basics.” The Basics patient education pieces are written in plain language, at the 5th to 6th grade reading level, and they answer the four or five key questions a patient might have about a given condition. These articles are best for patients who want a general overview and who prefer short, easy-to-read materials. Beyond the Basics patient education pieces are longer, more sophisticated, and more detailed. These articles are written at the 10th to 12th grade reading level and are best for patients who want in-depth information and are comfortable with some medical jargon.

Here are the patient education articles that are relevant to this topic. We encourage you to print or e-mail these topics to your patients. (You can also locate patient education articles on a variety of subjects by searching on “patient info” and the keyword(s) of interest.)

Basics topics (see "Patient information: Nausea and vomiting with cancer treatment (The Basics)")

SUMMARY AND RECOMMENDATIONS

Chemotherapy-induced nausea and vomiting (CINV) remains an important adverse effect of treatment, despite recent advances in prevention. CINV is classified as acute, delayed, and anticipatory, and these distinctions have important implications for patient management. (See "Pathophysiology and prediction of chemotherapy-induced nausea and vomiting", section on 'Types of emesis'.)

The most important factor determining the likelihood of acute or delayed emesis developing is the intrinsic emetogenicity of a particular chemotherapy agent (table 1 and table 2). (See "Pathophysiology and prediction of chemotherapy-induced nausea and vomiting", section on 'Chemotherapy agent'.)

The three categories of drugs with the highest therapeutic index for the management of CINV are the type three 5-hydroxytryptamine (5-HT3) receptor antagonists, the neurokinin-1 (NK1) receptor antagonists (aprepitant and fosaprepitant), and the glucocorticoids (especially dexamethasone) (table 3). (See '5-HT3 receptor antagonists' above and 'Neurokinin-1 receptor antagonists' above and 'Glucocorticoids' above.)

These agents are used alone (glucocorticoids) and in combinations depending on the specific chemotherapy regimen being administered, as recommended in the ASCO and MASCC/ESMO guidelines [4,5]. (See 'Acute emesis' above.)

All of the first-generation 5-HT3 receptor antagonists appear equally effective when used at the recommended dose. An orally disintegrating formulation of ondansetron, one that disperses rapidly when placed on the tongue and does not need to be swallowed with water, may be particularly useful for patients with dysphagia or anorexia.

EKG interval changes appear to be a class effect of the first generation 5-HT3 antagonists. Their use should be avoided in patients with congenital long-QT syndrome. Potassium and magnesium levels should be assessed, and if abnormal, corrected before initiation of treatment. ECG monitoring is recommended in patients with underlying cardiac disease including heart failure and bradyarrhythmias, and in patients taking other medications that increase the risk of QTc prolongation (table 5). (See 'EKG interval changes and cardiac arrhythmias' above.)

The second-generation agent palonosetron may be more effective than first generation 5-HT3 antagonists, particularly for prevention of delayed emesis, and QTc prolongation has not been described with palonosetron. In settings when an NK1R antagonist is not indicated, available evidence would support palonosetron as the preferred 5-HT3 receptor antagonist. (See '5-HT3 receptor antagonists' above.)

Recommendations — Antiemetic recommendations from ASCO according to the emetogenicity of the chemotherapy regimen are outlined in the table (table 7) [5]. In general, our recommendations parallel these guidelines.

Cisplatin and other high risk agents

For patients receiving cisplatin-based chemotherapy or another agent with high emetogenic risk (table 1 and table 2), we recommend antiemetic therapy with a combination of a 5-HT3 receptor antagonist, dexamethasone, and a neurokinin-1 receptor (NK1R) antagonist (aprepitant or fosaprepitant) (table 3) (Grade 1A). (See 'Efficacy' above.)

If aprepitant is used on day 1, we recommend maintenance therapy with a combination of aprepitant on days 2 and 3 and dexamethasone on days 2 through 4 (table 3) (Grade 1A). (See 'Management' above.) An alternative maintenance regimen is dexamethasone and metoclopramide on days 2 through 4.

A single dose schedule of fosaprepitant (dose 150 mg IV 30 minutes prior to chemotherapy in conjunction with a 5-HT3 receptor antagonist on day 1 and dexamethasone on days 1 through 4) is an acceptable alternative. (See 'One versus three-day administration' above.)

Anthracycline plus cyclophosphamide

For patients receiving chemotherapy with cyclophosphamide plus an anthracycline, we recommend antiemetic therapy with a combination of a 5-HT3 receptor antagonist, dexamethasone, and an NK1R antagonist (Grade 1A). (See 'Efficacy' above.)

If aprepitant is used on day 1, we recommend maintenance therapy with a combination of aprepitant on days 2 and 3 and dexamethasone on days 2 through 4 (table 3) (Grade 1B). (See 'Management' above.) An alternative maintenance regimen is dexamethasone alone on days 2 through 4. (See 'Versus glucocorticoids in patients receiving AC' above.)

A single dose schedule of fosaprepitant (dose 150 mg IV 30 minutes prior to chemotherapy in conjunction with a 5-HT3 receptor antagonist on day 1 and dexamethasone on days 1 through 4) is an acceptable alternative. (See 'One versus three-day administration' above.)

Moderate risk agents and regimens

For patients receiving moderately emetogenic chemotherapy (table 1 and table 2), we recommend the combination of palonosetron plus dexamethasone on day 1 (Grade 1A). If palonosetron is not available, clinicians may substitute a first-generation 5-HT3 receptor antagonist, such as granisetron or ondansetron. (See 'Combination with a 5-HT3 antagonist' above.)

To prevent delayed emesis in this population, we suggest single agent treatment with dexamethasone on days 2 and 3 (Grade 2B). If a first generation 5-HT3 receptor antagonist is used rather than palonosetron on day 1, then treatment with a first generation 5-HT3 receptor antagonist alone on days 2 and 3 is a reasonable alternative. (See 'Moderate risk agents' above.)

Low risk

For patients receiving low emetic risk agents (table 1 and table 2), we suggest treatment with dexamethasone (8 mg) as a single agent (Grade 2C). An alternative approach for patients in whom glucocorticoid use is contraindicated or undesirable (such as with the use of long-term weekly chemotherapy) is a single dose of a drug such as prochlorperazine [118]. This patient population generally does not require prophylaxis against delayed emesis. (See 'Glucocorticoids' above.)

Minimal risk

For most patients receiving chemotherapy agents with minimal risk of causing emesis (table 1 and table 2), we suggest that antiemetic therapy not be routinely administered to prevent either acute or delayed CINV (Grade 2B). Prophylactic antiemetics (dexamethasone 8 mg, prochlorperazine, or metoclopramide) may be administered to patients who have had emesis with prior low-risk regimens, or on as "as needed" basis. (See "Pathophysiology and prediction of chemotherapy-induced nausea and vomiting", section on 'Chemotherapy agent'.)

Anticipatory emesis

The primary approach to the prevention of anticipatory emesis is the prevention of CINV beginning with the initial cycles of chemotherapy. For patients who do develop anticipatory emesis, we suggest behavioral therapy or benzodiazepines (Grade 2B). (See 'Anticipatory emesis' above.)

High-dose chemotherapy

For patients receiving high-dose chemotherapy, we recommend a combination of dexamethasone, a 5-HT3 receptor antagonist, and an NK1R antagonist (Grade 1B). (See 'High-dose chemotherapy regimens' above.)

Multiday regimens

For patients receiving multiday (three or more) regimens that are moderately or highly emetogenic, we suggest the use of a daily dose of an oral 5-HT3 receptor antagonist or granisetron transdermal patch plus daily dexamethasone, with the addition of aprepitant (days 1, 2, and 3) or fosaprepitant (day 1) for highly emetogenic regimens (eg, five days of cisplatin in regimens for testicular or ovarian germ cell cancer) (Grade 2C). (See 'Consecutive day therapy with highly emetogenic agents' above.)

Poor emesis control

For patients who do not achieve adequate control of CINV with their initial antiemetic regimen, the patient's management should be reviewed to ensure that there are no other factors responsible for continued emesis and that adequate antiemetic therapy actually was administered for the given chemotherapy regimen. If CINV remains an issue, the addition of a second line agent (such as olanzapine) or changing from one 5-HT3 receptor antagonist to another may be useful. (See 'Poor control of emesis' above and 'Other agents' above.)

Use of UpToDate is subject to the Subscription and License Agreement.

REFERENCES

  1. Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med 2008; 358:2482.
  2. Hesketh PJ, Kris MG, Grunberg SM, et al. Proposal for classifying the acute emetogenicity of cancer chemotherapy. J Clin Oncol 1997; 15:103.
  3. Roila F, Hesketh PJ, Herrstedt J, Antiemetic Subcommitte of the Multinational Association of Supportive Care in Cancer. Prevention of chemotherapy- and radiotherapy-induced emesis: results of the 2004 Perugia International Antiemetic Consensus Conference. Ann Oncol 2006; 17:20.
  4. Roila F, Herrstedt J, Aapro M, et al. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol 2010; 21 Suppl 5:v232.
  5. Basch E, Prestrud AA, Hesketh PJ, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2011; 29:4189.
  6. National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) available online at http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf (Accessed on April 27, 2011).
  7. Heron JF, Goedhals L, Jordaan JP, et al. Oral granisetron alone and in combination with dexamethasone: a double-blind randomized comparison against high-dose metoclopramide plus dexamethasone in prevention of cisplatin-induced emesis. The Granisetron Study Group. Ann Oncol 1994; 5:579.
  8. Chevallier B. Efficacy and safety of granisetron compared with high-dose metoclopramide plus dexamethasone in patients receiving high-dose cisplatin in a single-blind study. The Granisetron Study Group. Eur J Cancer 1990; 26 Suppl 1:S33.
  9. Warr D, Wilan A, Venner P, et al. A randomised, double-blind comparison of granisetron with high-dose metoclopramide, dexamethasone and diphenhydramine for cisplatin-induced emesis. An NCI Canada Clinical Trials Group Phase III Trial. Eur J Cancer 1992; 29A:33.
  10. Chevallier B, Cappelaere P, Splinter T, et al. A double-blind, multicentre comparison of intravenous dolasetron mesilate and metoclopramide in the prevention of nausea and vomiting in cancer patients receiving high-dose cisplatin chemotherapy. Support Care Cancer 1997; 5:22.
  11. Davidson N, Rapoport B, Erikstein B, et al. Comparison of an orally disintegrating ondansetron tablet with the conventional ondansetron tablet for cyclophosphamide-induced emesis in cancer patients: a multicenter, double-masked study. Ondansetron Orally Disintegrating Tablet Emesis Study Group. Clin Ther 1999; 21:492.
  12. del Giglio A, Soares HP, Caparroz C, Castro PC. Granisetron is equivalent to ondansetron for prophylaxis of chemotherapy-induced nausea and vomiting: results of a meta-analysis of randomized controlled trials. Cancer 2000; 89:2301.
  13. Gandara DR, Roila F, Warr D, et al. Consensus proposal for 5HT3 antagonists in the prevention of acute emesis related to highly emetogenic chemotherapy. Dose, schedule, and route of administration. Support Care Cancer 1998; 6:237.
  14. Seynaeve C, Schuller J, Buser K, et al. Comparison of the anti-emetic efficacy of different doses of ondansetron, given as either a continuous infusion or a single intravenous dose, in acute cisplatin-induced emesis. A multicentre, double-blind, randomised, parallel group study. Ondansetron Study Group. Br J Cancer 1992; 66:192.
  15. Beck TM, Hesketh PJ, Madajewicz S, et al. Stratified, randomized, double-blind comparison of intravenous ondansetron administered as a multiple-dose regimen versus two single-dose regimens in the prevention of cisplatin-induced nausea and vomiting. J Clin Oncol 1992; 10:1969.
  16. Ettinger DS, Eisenberg PD, Fitts D, et al. A double-blind comparison of the efficacy of two dose regimens of oral granisetron in preventing acute emesis in patients receiving moderately emetogenic chemotherapy. Cancer 1996; 78:144.
  17. Harman GS, Omura GA, Ryan K, et al. A randomized, double-blind comparison of single-dose and divided multiple-dose dolasetron for cisplatin-induced emesis. Cancer Chemother Pharmacol 1996; 38:323.
  18. Kaizer L, Warr D, Hoskins P, et al. Effect of schedule and maintenance on the antiemetic efficacy of ondansetron combined with dexamethasone in acute and delayed nausea and emesis in patients receiving moderately emetogenic chemotherapy: a phase III trial by the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1994; 12:1050.
  19. Perez EA, Hesketh P, Sandbach J, et al. Comparison of single-dose oral granisetron versus intravenous ondansetron in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy: a multicenter, double-blind, randomized parallel study. J Clin Oncol 1998; 16:754.
  20. Gralla RJ, Navari RM, Hesketh PJ, et al. Single-dose oral granisetron has equivalent antiemetic efficacy to intravenous ondansetron for highly emetogenic cisplatin-based chemotherapy. J Clin Oncol 1998; 16:1568.
  21. Mason JW, Selness DS, Moon TE, et al. Pharmacokinetics and repolarization effects of intravenous and transdermal granisetron. Clin Cancer Res 2012; 18:2913.
  22. Navari RM, Koeller JM. Electrocardiographic and cardiovascular effects of the 5-hydroxytryptamine3 receptor antagonists. Ann Pharmacother 2003; 37:1276.
  23. Pinarli FG, Elli M, Dagdemir A, et al. Electrocardiographic findings after 5-HT3 receptor antagonists and chemotherapy in children with cancer. Pediatr Blood Cancer 2006; 47:567.
  24. Keller GA, Ponte ML, Di Girolamo G. Other drugs acting on nervous system associated with QT-interval prolongation. Curr Drug Saf 2010; 5:105.
  25. Turner S, Mathews L, Pandharipande P, Thompson R. Dolasetron-induced torsades de pointes. J Clin Anesth 2007; 19:622.
  26. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm272041.htm (Accessed on September 20, 2011).
  27. FDA safety communication available online at http://www.fda.gov/Drugs/DrugSafety/ucm237081.htm (Accessed on December 21, 2010).
  28. http://www.fda.gov/Drugs/DrugSafety/ucm310190.htm (Accessed on July 02, 2012).
  29. http://healthycanadians.gc.ca/recall-alert-rappel-avis/hc-sc/2014/39943a-eng.php (Accessed on June 16, 2014).
  30. Gonullu G, Demircan S, Demirag MK, et al. Electrocardiographic findings of palonosetron in cancer patients. Support Care Cancer 2012; 20:1435.
  31. Eisenberg P, Figueroa-Vadillo J, Zamora R, et al. Improved prevention of moderately emetogenic chemotherapy-induced nausea and vomiting with palonosetron, a pharmacologically novel 5-HT3 receptor antagonist: results of a phase III, single-dose trial versus dolasetron. Cancer 2003; 98:2473.
  32. Gralla R, Lichinitser M, Van Der Vegt S, et al. Palonosetron improves prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy: results of a double-blind randomized phase III trial comparing single doses of palonosetron with ondansetron. Ann Oncol 2003; 14:1570.
  33. Likun Z, Xiang J, Yi B, et al. A systematic review and meta-analysis of intravenous palonosetron in the prevention of chemotherapy-induced nausea and vomiting in adults. Oncologist 2011; 16:207.
  34. Saito M, Aogi K, Sekine I, et al. Palonosetron plus dexamethasone versus granisetron plus dexamethasone for prevention of nausea and vomiting during chemotherapy: a double-blind, double-dummy, randomised, comparative phase III trial. Lancet Oncol 2009; 10:115.
  35. Aapro MS, Grunberg SM, Manikhas GM, et al. A phase III, double-blind, randomized trial of palonosetron compared with ondansetron in preventing chemotherapy-induced nausea and vomiting following highly emetogenic chemotherapy. Ann Oncol 2006; 17:1441.
  36. WHO Pharmaceuticals newsletter. Ondansetron and serotonin syndrome. 2012; 3:16.
  37. dos Santos LV, Souza FH, Brunetto AT, et al. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting: a systematic review. J Natl Cancer Inst 2012; 104:1280.
  38. Campos D, Pereira JR, Reinhardt RR, et al. Prevention of cisplatin-induced emesis by the oral neurokinin-1 antagonist, MK-869, in combination with granisetron and dexamethasone or with dexamethasone alone. J Clin Oncol 2001; 19:1759.
  39. Grunberg S, Chua D, Maru A, et al. Single-dose fosaprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with cisplatin therapy: randomized, double-blind study protocol--EASE. J Clin Oncol 2011; 29:1495.
  40. McCrea JB, Majumdar AK, Goldberg MR, et al. Effects of the neurokinin1 receptor antagonist aprepitant on the pharmacokinetics of dexamethasone and methylprednisolone. Clin Pharmacol Ther 2003; 74:17.
  41. Hesketh PJ, Grunberg SM, Gralla RJ, et al. The oral neurokinin-1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a multinational, randomized, double-blind, placebo-controlled trial in patients receiving high-dose cisplatin--the Aprepitant Protocol 052 Study Group. J Clin Oncol 2003; 21:4112.
  42. Poli-Bigelli S, Rodrigues-Pereira J, Carides AD, et al. Addition of the neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy improves control of chemotherapy-induced nausea and vomiting. Results from a randomized, double-blind, placebo-controlled trial in Latin America. Cancer 2003; 97:3090.
  43. Warr DG, Hesketh PJ, Gralla RJ, et al. Efficacy and tolerability of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in patients with breast cancer after moderately emetogenic chemotherapy. J Clin Oncol 2005; 23:2822.
  44. Nygren P, Hande K, Petty KJ, et al. Lack of effect of aprepitant on the pharmacokinetics of docetaxel in cancer patients. Cancer Chemother Pharmacol 2005; 55:609.
  45. Hesketh PJ, Rossi G, Rizzi G, et al. Efficacy and safety of NEPA, an oral combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting following highly emetogenic chemotherapy: a randomized dose-ranging pivotal study. Ann Oncol 2014; 25:1340.
  46. Gralla RJ, Bosnjak SM, Hontsa A, et al. A phase III study evaluating the safety and efficacy of NEPA, a fixed-dose combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting over repeated cycles of chemotherapy. Ann Oncol 2014; 25:1333.
  47. Ioannidis JP, Hesketh PJ, Lau J. Contribution of dexamethasone to control of chemotherapy-induced nausea and vomiting: a meta-analysis of randomized evidence. J Clin Oncol 2000; 18:3409.
  48. Italian Group for Antiemetic Research. Dexamethasone, granisetron, or both for the prevention of nausea and vomiting during chemotherapy for cancer. N Engl J Med 1995; 332:1.
  49. Roila F, Tonato M, Cognetti F, et al. Prevention of cisplatin-induced emesis: a double-blind multicenter randomized crossover study comparing ondansetron and ondansetron plus dexamethasone. J Clin Oncol 1991; 9:675.
  50. Smyth JF, Coleman RE, Nicolson M, et al. Does dexamethasone enhance control of acute cisplatin induced emesis by ondansetron? BMJ 1991; 303:1423.
  51. Hesketh PJ, Harvey WH, Harker WG, et al. A randomized, double-blind comparison of intravenous ondansetron alone and in combination with intravenous dexamethasone in the prevention of high-dose cisplatin-induced emesis. J Clin Oncol 1994; 12:596.
  52. Joss RA, Bacchi M, Buser K, et al. Ondansetron plus dexamethasone is superior to ondansetron alone in the prevention of emesis in chemotherapy-naive and previously treated patients. Swiss Group for Clinical Cancer Research (SAKK). Ann Oncol 1994; 5:253.
  53. Double-blind, dose-finding study of four intravenous doses of dexamethasone in the prevention of cisplatin-induced acute emesis. Italian Group for Antiemetic Research. J Clin Oncol 1998; 16:2937.
  54. Italian Group For Antiemetic Research. Randomized, double-blind, dose-finding study of dexamethasone in preventing acute emesis induced by anthracyclines, carboplatin, or cyclophosphamide:. J Clin Oncol 2004; 22:725.
  55. Pomeroy M, Fennelly JJ, Towers M. Prospective randomized double-blind trial of nabilone versus domperidone in the treatment of cytotoxic-induced emesis. Cancer Chemother Pharmacol 1986; 17:285.
  56. Sallan SE, Zinberg NE, Frei E 3rd. Antiemetic effect of delta-9-tetrahydrocannabinol in patients receiving cancer chemotherapy. N Engl J Med 1975; 293:795.
  57. Herman TS, Einhorn LH, Jones SE, et al. Superiority of nabilone over prochlorperazine as an antiemetic in patients receiving cancer chemotherapy. N Engl J Med 1979; 300:1295.
  58. Todaro B. Cannabinoids in the treatment of chemotherapy-induced nausea and vomiting. J Natl Compr Canc Netw 2012; 10:487.
  59. Grunberg SM, et al. Randomized double-blind evaluation of dronabinol for the prevention of chemotherapy-induced nausea. J Clin Oncol 30, 2012 (suppl; abstr 9061). Abstract available online at http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=114&abstractID=92888 (Accessed on June 12, 2012).
  60. Olver I, Paska W, Depierre A, et al. A multicentre, double-blind study comparing placebo, ondansetron and ondansetron plus dexamethasone for the control of cisplatin-induced delayed emesis. Ondansetron Delayed Emesis Study Group. Ann Oncol 1996; 7:945.
  61. Koo WH, Ang PT. Role of maintenance oral dexamethasone in prophylaxis of delayed emesis caused by moderately emetogenic chemotherapy. Ann Oncol 1996; 7:71.
  62. Kris MG, Gralla RJ, Tyson LB, et al. Controlling delayed vomiting: double-blind, randomized trial comparing placebo, dexamethasone alone, and metoclopramide plus dexamethasone in patients receiving cisplatin. J Clin Oncol 1989; 7:108.
  63. Dexamethasone alone or in combination with ondansetron for the prevention of delayed nausea and vomiting induced by chemotherapy. The Italian Group for Antiemetic Research. N Engl J Med 2000; 342:1554.
  64. Pater JL, Lofters WS, Zee B, et al. The role of the 5-HT3 antagonists ondansetron and dolasetron in the control of delayed onset nausea and vomiting in patients receiving moderately emetogenic chemotherapy. Ann Oncol 1997; 8:181.
  65. Hesketh PJ, Sanz-Altamira P, Bushey J, et al. Prospective evaluation of the incidence of nausea and vomiting in patients with colorectal cancer receiving oxaliplatin-based chemotherapy (abstract #9645). J Clin Oncol 2008; 26:9645.
  66. Hesketh PJ, Sanz-Altamira P, Bushey J, Hesketh AM. Prospective evaluation of the incidence of delayed nausea and vomiting in patients with colorectal cancer receiving oxaliplatin-based chemotherapy. Support Care Cancer 2012; 20:1043.
  67. Fleishman SB, Mahajan D, Rosenwald V, et al. Prevalence of Delayed Nausea and/or Vomiting in Patients Treated With Oxaliplatin-Based Regimens for Colorectal Cancer. J Oncol Pract 2012; 8:136.
  68. Roila F, Ruggeri B, Ballatori E, et al. Aprepitant versus dexamethasone for preventing chemotherapy-induced delayed emesis in patients with breast cancer: a randomized double-blind study. J Clin Oncol 2014; 32:101.
  69. Roila F, Ballatori E, Ruggeri B et al. Aprepitant versus metoclopramide, both combined with dexamethasone, for preventing cisplatin-induced delayed emesis: A randomized, double-blind study (abstrct). J Clin Oncol 32: 5s, 2014 (suppl; abstr 9503). Abstract available online at http://meetinglibrary.asco.org/content/127891-144 (Accessed on June 13, 2014).
  70. Aapro M, Rugo H, Rossi G, et al. A randomized phase III study evaluating the efficacy and safety of NEPA, a fixed-dose combination of netupitant and palonosetron, for prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy. Ann Oncol 2014; 25:1328.
  71. Navari RM, Madajewicz S, Anderson N, et al. Oral ondansetron for the control of cisplatin-induced delayed emesis: a large, multicenter, double-blind, randomized comparative trial of ondansetron versus placebo. J Clin Oncol 1995; 13:2408.
  72. Latreille J, Pater J, Johnston D, et al. Use of dexamethasone and granisetron in the control of delayed emesis for patients who receive highly emetogenic chemotherapy. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1998; 16:1174.
  73. Goedhals L, Heron JF, Kleisbauer JP, et al. Control of delayed nausea and vomiting with granisetron plus dexamethasone or dexamethasone alone in patients receiving highly emetogenic chemotherapy: a double-blind, placebo-controlled, comparative study. Ann Oncol 1998; 9:661.
  74. Tsukada H, Hirose T, Yokoyama A, Kurita Y. Randomised comparison of ondansetron plus dexamethasone with dexamethasone alone for the control of delayed cisplatin-induced emesis. Eur J Cancer 2001; 37:2398.
  75. Geling O, Eichler HG. Should 5-hydroxytryptamine-3 receptor antagonists be administered beyond 24 hours after chemotherapy to prevent delayed emesis? Systematic re-evaluation of clinical evidence and drug cost implications. J Clin Oncol 2005; 23:1289.
  76. Navari RM, Gray SE, Kerr AC. Olanzapine versus aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a randomized phase III trial. J Support Oncol 2011; 9:188.
  77. Tan L, Liu J, Liu X, et al. Clinical research of Olanzapine for prevention of chemotherapy-induced nausea and vomiting. J Exp Clin Cancer Res 2009; 28:131.
  78. Roscoe JA, Heckler CE, Morrow GR, et al. Prevention of delayed nausea: a University of Rochester Cancer Center Community Clinical Oncology Program study of patients receiving chemotherapy. J Clin Oncol 2012; 30:3389.
  79. Morrow GR, Roscoe JA, Kirshner JJ, et al. Anticipatory nausea and vomiting in the era of 5-HT3 antiemetics. Support Care Cancer 1998; 6:244.
  80. Roscoe JA, Bushunow P, Morrow GR, et al. Patient expectation is a strong predictor of severe nausea after chemotherapy: a University of Rochester Community Clinical Oncology Program study of patients with breast carcinoma. Cancer 2004; 101:2701.
  81. Morrow GR, Morrell C. Behavioral treatment for the anticipatory nausea and vomiting induced by cancer chemotherapy. N Engl J Med 1982; 307:1476.
  82. Burish TG, Jenkins RA. Effectiveness of biofeedback and relaxation training in reducing the side effects of cancer chemotherapy. Health Psychol 1992; 11:17.
  83. Fallowfield LJ. Behavioural interventions and psychological aspects of care during chemotherapy. Eur J Cancer 1992; 28A Suppl 1:S39.
  84. Greenberg DB, Surman OS, Clarke J, Baer L. Alprazolam for phobic nausea and vomiting related to cancer chemotherapy. Cancer Treat Rep 1987; 71:549.
  85. Razavi D, Delvaux N, Farvacques C, et al. Prevention of adjustment disorders and anticipatory nausea secondary to adjuvant chemotherapy: a double-blind, placebo-controlled study assessing the usefulness of alprazolam. J Clin Oncol 1993; 11:1384.
  86. Malik IA, Khan WA, Qazilbash M, et al. Clinical efficacy of lorazepam in prophylaxis of anticipatory, acute, and delayed nausea and vomiting induced by high doses of cisplatin. A prospective randomized trial. Am J Clin Oncol 1995; 18:170.
  87. Hainsworth JD. The use of ondansetron in patients receiving multiple-day cisplatin regimens. Semin Oncol 1992; 19:48.
  88. Räth U, Upadhyaya BK, Arechavala E, et al. Role of ondansetron plus dexamethasone in fractionated chemotherapy. Oncology 1993; 50:168.
  89. Albany C, Brames MJ, Fausel C, et al. Randomized, double-blind, placebo-controlled, phase III cross-over study evaluating the oral neurokinin-1 antagonist aprepitant in combination with a 5HT3 receptor antagonist and dexamethasone in patients with germ cell tumors receiving 5-day cisplatin combination chemotherapy regimens: a hoosier oncology group study. J Clin Oncol 2012; 30:3998.
  90. Boccia RV, Gordan LN, Clark G, et al. Efficacy and tolerability of transdermal granisetron for the control of chemotherapy-induced nausea and vomiting associated with moderately and highly emetogenic multi-day chemotherapy: a randomized, double-blind, phase III study. Support Care Cancer 2011; 19:1609.
  91. Mattiuzzi GN, Cortes JE, Blamble DA, et al. Daily palonosetron is superior to ondansetron in the prevention of delayed chemotherapy-induced nausea and vomiting in patients with acute myelogenous leukemia. Cancer 2010; 116:5659.
  92. López-Jiménez J, Martín-Ballesteros E, Sureda A, et al. Chemotherapy-induced nausea and vomiting in acute leukemia and stem cell transplant patients: results of a multicenter, observational study. Haematologica 2006; 91:84.
  93. Bosi A, Guidi S, Messori A, et al. Ondansetron versus chlorpromazine for preventing emesis in bone marrow transplant recipients: a double-blind randomized study. J Chemother 1993; 5:191.
  94. Okamoto S, Takahashi S, Tanosaki R, et al. Granisetron in the prevention of vomiting induced by conditioning for stem cell transplantation: a prospective randomized study. Bone Marrow Transplant 1996; 17:679.
  95. Gilbert CJ, Ohly KV, Rosner G, Peters WP. Randomized, double-blind comparison of a prochlorperazine-based versus a metoclopramide-based antiemetic regimen in patients undergoing autologous bone marrow transplantation. Cancer 1995; 76:2330.
  96. Stiff P, Fox-Geiman M, Kiley K, et al. Aprepitant vs. placebo plus oral ondansetron and dexamethasone for the prevention of nausea and vomiting associated with highly emetogenic preparative regimens prior to hematopoietic stem cell transplantation; A prospective, randomized double-blind phase III trial. Blood (ASH Annual Meeting Abstracts) 2009; 114:2267.
  97. Abbott B, Ippoliti C, Bruton J, et al. Antiemetic efficacy of granisetron plus dexamethasone in bone marrow transplant patients receiving chemotherapy and total body irradiation. Bone Marrow Transplant 1999; 23:265.
  98. Barbounis V, Koumakis G, Hatzichristou H, et al. The anti-emetic efficacy of tropisetron plus dexamethasone in patients treated with high-dose chemotherapy and stem cell transplantation. Support Care Cancer 1999; 7:79.
  99. Gralla RJ, Osoba D, Kris MG, et al. Recommendations for the use of antiemetics: evidence-based, clinical practice guidelines. American Society of Clinical Oncology. J Clin Oncol 1999; 17:2971.
  100. Yeh SP, Lo WC, Hsieh CY, et al. Palonosetron and dexamethasone for the prevention of nausea and vomiting in patients receiving allogeneic hematopoietic stem cell transplantation. Support Care Cancer 2014; 22:1199.
  101. Stiff PJ, Fox-Geiman MP, Kiley K, et al. Prevention of nausea and vomiting associated with stem cell transplant: results of a prospective, randomized trial of aprepitant used with highly emetogenic preparative regimens. Biol Blood Marrow Transplant 2013; 19:49.
  102. Navari RM, Nagy CK, Gray SE. The use of olanzapine versus metoclopramide for the treatment of breakthrough chemotherapy-induced nausea and vomiting in patients receiving highly emetogenic chemotherapy. Support Care Cancer 2013; 21:1655.
  103. de Wit R, de Boer AC, vd Linden GH, et al. Effective cross-over to granisetron after failure to ondansetron, a randomized double blind study in patients failing ondansetron plus dexamethasone during the first 24 hours following highly emetogenic chemotherapy. Br J Cancer 2001; 85:1099.
  104. Harousseau JL, Zittoun R, Bonneterre J, et al. [Improvement in the control of chemotherapy induced emesis with ondansetron, methylprednisolone and lorazepam combination in patients treated by a moderate emetic treatment and uncontrolled by a previous antiemetic combination]. Bull Cancer 2000; 87:491.
  105. Sigsgaard T, Herrstedt J, Christensen P, et al. Antiemetic efficacy of combination therapy with granisetron plus prednisolone plus the dopamine D2 antagonist metopimazine during multiple cycles of moderately emetogenic chemotherapy in patients refractory to previous antiemetic therapy. Support Care Cancer 2000; 8:233.
  106. de Jong FA, Engels FK, Mathijssen RH, et al. Medicinal cannabis in oncology practice: still a bridge too far? J Clin Oncol 2005; 23:2886.
  107. Machado Rocha FC, Stéfano SC, De Cássia Haiek R, et al. Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur J Cancer Care (Engl) 2008; 17:431.
  108. Furlow B. States and US Government spar over medical marijuana. Lancet Oncol 2012; 13:450.
  109. Vinciguerra V, Moore T, Brennan E. Inhalation marijuana as an antiemetic for cancer chemotherapy. N Y State J Med 1988; 88:525.
  110. Bowles DW, O'Bryant CL, Camidge DR, Jimeno A. The intersection between cannabis and cancer in the United States. Crit Rev Oncol Hematol 2012; 83:1.
  111. Ryan JL, Heckler CE, Roscoe JA, et al. Ginger (Zingiber officinale) reduces acute chemotherapy-induced nausea: a URCC CCOP study of 576 patients. Support Care Cancer 2012; 20:1479.
  112. Pillai AK, Sharma KK, Gupta YK, Bakhshi S. Anti-emetic effect of ginger powder versus placebo as an add-on therapy in children and young adults receiving high emetogenic chemotherapy. Pediatr Blood Cancer 2011; 56:234.
  113. Zick SM, Ruffin MT, Lee J, et al. Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Support Care Cancer 2009; 17:563.
  114. Garcia MK, McQuade J, Haddad R, et al. Systematic review of acupuncture in cancer care: a synthesis of the evidence. J Clin Oncol 2013; 31:952.
  115. Shen J, Wenger N, Glaspy J, et al. Electroacupuncture for control of myeloablative chemotherapy-induced emesis: A randomized controlled trial. JAMA 2000; 284:2755.
  116. Lotfi-Jam K, Carey M, Jefford M, et al. Nonpharmacologic strategies for managing common chemotherapy adverse effects: a systematic review. J Clin Oncol 2008; 26:5618.
  117. Ezzo JM, Richardson MA, Vickers A, et al. Acupuncture-point stimulation for chemotherapy-induced nausea or vomiting. Cochrane Database Syst Rev 2006; :CD002285.
  118. National Comprehensive Cancer Network (NCCN). NCCN Clinical practice guidelines in oncology. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp (Accessed on April 01, 2014).
Topic 1151 Version 41.0

Topic Outline

GRAPHICS

RELATED TOPICS

All topics are updated as new information becomes available. Our peer review process typically takes one to six weeks depending on the issue.