Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Peripartum cardiomyopathy: Treatment and prognosis

Wendy Tsang, MD
Roberto M Lang, MD
Section Editor
Candice Silversides, MD, MS, FRCPC
Deputy Editor
Susan B Yeon, MD, JD, FACC


Peripartum cardiomyopathy (PPCM, also called pregnancy-associated cardiomyopathy) is a rare cause of heart failure (HF) that affects women late in pregnancy or in the early puerperium [1]. Although initially described in 1849 [2], it was not recognized as a distinct clinical entity until the 1930s [3]. Earlier terms for this condition include toxic postpartum HF, Meadows’ syndrome, Zaria syndrome, and postpartum myocardiosis.

Treatment of PPCM is similar to that employed for other types of HF with left ventricular systolic dysfunction. However, modifications to standard therapy are often necessary to ensure the safety of the mother and the unborn or breastfeeding child. (See "Management of heart failure during pregnancy", section on 'Management goals'.)

Etiology, clinical manifestations, and diagnosis of PPCM, critical illness during pregnancy and the peripartum period, HF during pregnancy, and issues related to pregnancy in women with acquired or congenital heart disease are discussed separately. (See "Peripartum cardiomyopathy: Etiology, clinical manifestations, and diagnosis" and "Critical illness during pregnancy and the peripartum period" and "Management of heart failure during pregnancy" and "Acquired heart disease and pregnancy" and "Pregnancy in women with congenital heart disease: General principles".)


Treatment of peripartum cardiomyopathy (PPCM) is largely similar to treatment for other types of heart failure (HF). Additional therapeutic issues for this population may include arrhythmia management, anticoagulation therapy, mechanical support, and investigational therapies such as bromocriptine [4].

Heart failure treatment — In women with PPCM and HF, the goals of medical therapy are similar to those in patients with acute and chronic HF with reduced ejection fraction due to other causes. These include:

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Oct 24, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Sliwa K, Hilfiker-Kleiner D, Petrie MC, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail 2010; 12:767.
  2. Richie C. Clinical contribution to the pathology, diagnosis and treatment of certain chronic diseases of the heart. Edinb Med Surg J 1849; 2:333.
  3. Hafkesbring E, Hull E. "Toxic" postpartal heart disease. New Orleans Med Surg J 1937; 89:550.
  4. Sliwa K, Blauwet L, Tibazarwa K, et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation 2010; 121:1465.
  5. Mallikethi-Reddy S, Akintoye E, Trehan N, et al. Burden of arrhythmias in peripartum cardiomyopathy: Analysis of 9841 hospitalizations. Int J Cardiol 2017; 235:114.
  6. Honigberg MC, Givertz MM. Arrhythmias in peripartum cardiomyopathy. Card Electrophysiol Clin 2015; 7:309.
  7. Duncker D, Haghikia A, König T, et al. Risk for ventricular fibrillation in peripartum cardiomyopathy with severely reduced left ventricular function-value of the wearable cardioverter/defibrillator. Eur J Heart Fail 2014; 16:1331.
  8. Isezuo SA, Abubakar SA. Epidemiologic profile of peripartum cardiomyopathy in a tertiary care hospital. Ethn Dis 2007; 17:228.
  9. Biteker M, Ilhan E, Biteker G, et al. Delayed recovery in peripartum cardiomyopathy: an indication for long-term follow-up and sustained therapy. Eur J Heart Fail 2012; 14:895.
  10. Pillarisetti J, Kondur A, Alani A, et al. Peripartum cardiomyopathy: predictors of recovery and current state of implantable cardioverter-defibrillator use. J Am Coll Cardiol 2014; 63:2831.
  11. Saltzberg MT, Szymkiewicz S, Bianco NR. Characteristics and outcomes of peripartum versus nonperipartum cardiomyopathy in women using a wearable cardiac defibrillator. J Card Fail 2012; 18:21.
  12. Mouquet F, Mostefa Kara M, Lamblin N, et al. Unexpected and rapid recovery of left ventricular function in patients with peripartum cardiomyopathy: impact of cardiac resynchronization therapy. Eur J Heart Fail 2012; 14:526.
  13. Kane A, Mbaye M, Ndiaye MB, et al. [Evolution and thromboembolic complications of the idiopathic peripartal cardiomyopathy at Dakar University Hospital: forward-looking study about 33 cases]. J Gynecol Obstet Biol Reprod (Paris) 2010; 39:484.
  14. Simeon IA. Echocardiographic profile of peripartum cardiomyopathy in a tertiary care hospital in sokoto, Nigeria. Indian Heart J 2006; 58:234.
  15. Fett JD. Caution in the use of bromocriptine in peripartum cardiomyopathy. J Am Coll Cardiol 2008; 51:2083; author reply 2083.
  16. Bouabdallaoui N, Mouquet F, Lebreton G, et al. Current knowledge and recent development on management of peripartum cardiomyopathy. Eur Heart J Acute Cardiovasc Care 2017; 6:359.
  17. Neumann A, Hilfiker-Kleiner D, Kühn C, et al. Prolactin – A New Marker for ECMO-Related Mortality. The Journal of Heart and Lung Transplantation 2013; 32:S225.
  18. Bauersachs J, Arrigo M, Hilfiker-Kleiner D, et al. Current management of patients with severe acute peripartum cardiomyopathy: practical guidance from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur J Heart Fail 2016; 18:1096.
  19. Loyaga-Rendon RY, Pamboukian SV, Tallaj JA, et al. Outcomes of patients with peripartum cardiomyopathy who received mechanical circulatory support. Data from the Interagency Registry for Mechanically Assisted Circulatory Support. Circ Heart Fail 2014; 7:300.
  20. Midei MG, DeMent SH, Feldman AM, et al. Peripartum myocarditis and cardiomyopathy. Circulation 1990; 81:922.
  21. Costanzo-Nordin, MR, O'Connell, JB. Peripartum cardiomyopathy in the 1980's: Etiologic and prognostic considerations and review of the literature. Progr Cardiol 1989; 2:225.
  22. Keogh A, Macdonald P, Spratt P, et al. Outcome in peripartum cardiomyopathy after heart transplantation. J Heart Lung Transplant 1994; 13:202.
  23. Elkayam U, Akhter MW, Singh H, et al. Pregnancy-associated cardiomyopathy: clinical characteristics and a comparison between early and late presentation. Circulation 2005; 111:2050.
  24. Felker GM, Jaeger CJ, Klodas E, et al. Myocarditis and long-term survival in peripartum cardiomyopathy. Am Heart J 2000; 140:785.
  25. Amos AM, Jaber WA, Russell SD. Improved outcomes in peripartum cardiomyopathy with contemporary. Am Heart J 2006; 152:509.
  26. Habli M, O'Brien T, Nowack E, et al. Peripartum cardiomyopathy: prognostic factors for long-term maternal outcome. Am J Obstet Gynecol 2008; 199:415.e1.
  27. Rasmusson K, Brunisholz K, Budge D, et al. Peripartum cardiomyopathy: post-transplant outcomes from the United Network for Organ Sharing Database. J Heart Lung Transplant 2012; 31:180.
  28. Hilfiker-Kleiner D, Kaminski K, Podewski E, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 2007; 128:589.
  29. Hilfiker-Kleiner D, Meyer GP, Schieffer E, et al. Recovery from postpartum cardiomyopathy in 2 patients by blocking prolactin release with bromocriptine. J Am Coll Cardiol 2007; 50:2354.
  30. Habedank D, Kühnle Y, Elgeti T, et al. Recovery from peripartum cardiomyopathy after treatment with bromocriptine. Eur J Heart Fail 2008; 10:1149.
  31. Haghikia A, Podewski E, Libhaber E, et al. Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res Cardiol 2013; 108:366.
  32. Carlin AJ, Alfirevic Z, Gyte GM. Interventions for treating peripartum cardiomyopathy to improve outcomes for women and babies. Cochrane Database Syst Rev 2010; :CD008589.
  33. Elkayam U, Goland S. Bromocriptine for the treatment of peripartum cardiomyopathy. Circulation 2010; 121:1463.
  34. Hilfiker-Kleiner D, Haghikia A, Berliner D, et al. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur Heart J 2017; 38:2671.
  35. Lampert MB, Lang RM. Peripartum cardiomyopathy. Am Heart J 1995; 130:860.
  36. Mason JW, O'Connell JB, Herskowitz A, et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med 1995; 333:269.
  37. Bozkurt B, Villaneuva FS, Holubkov R, et al. Intravenous immune globulin in the therapy of peripartum cardiomyopathy. J Am Coll Cardiol 1999; 34:177.
  38. Murali S, Baldisseri MR. Peripartum cardiomyopathy. Crit Care Med 2005; 33:S340.
  39. Safirstein JG, Ro AS, Grandhi S, et al. Predictors of left ventricular recovery in a cohort of peripartum cardiomyopathy patients recruited via the internet. Int J Cardiol 2012; 154:27.
  40. Elkayam U. Clinical characteristics of peripartum cardiomyopathy in the United States: diagnosis, prognosis, and management. J Am Coll Cardiol 2011; 58:659.
  41. Tepper NK, Paulen ME, Marchbanks PA, Curtis KM. Safety of contraceptive use among women with peripartum cardiomyopathy: a systematic review. Contraception 2010; 82:95.
  42. Curtis KM, Tepper NK, Jatlaoui TC, et al. U.S. Medical Eligibility Criteria for Contraceptive Use, 2016. MMWR Recomm Rep 2016; 65:1.
  43. Hilfiker-Kleiner D, Haghikia A, Nonhoff J, Bauersachs J. Peripartum cardiomyopathy: current management and future perspectives. Eur Heart J 2015; 36:1090.
  44. Sliwa K, Skudicky D, Bergemann A, et al. Peripartum cardiomyopathy: analysis of clinical outcome, left ventricular function, plasma levels of cytokines and Fas/APO-1. J Am Coll Cardiol 2000; 35:701.
  45. Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 2000; 342:1077.
  46. Ravikishore AG, Kaul UA, Sethi KK, Khalilullah M. Peripartum cardiomyopathy: prognostic variables at initial evaluation. Int J Cardiol 1991; 32:377.
  47. Witlin AG, Mabie WC, Sibai BM. Peripartum cardiomyopathy: an ominous diagnosis. Am J Obstet Gynecol 1997; 176:182.
  48. Lampert MB, Weinert L, Hibbard J, et al. Contractile reserve in patients with peripartum cardiomyopathy and recovered left ventricular function. Am J Obstet Gynecol 1997; 176:189.
  49. Sliwa K, Förster O, Libhaber E, et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur Heart J 2006; 27:441.
  50. Modi KA, Illum S, Jariatul K, et al. Poor outcome of indigent patients with peripartum cardiomyopathy in the United States. Am J Obstet Gynecol 2009; 201:171.e1.
  51. Harper MA, Meyer RE, Berg CJ. Peripartum cardiomyopathy: population-based birth prevalence and 7-year mortality. Obstet Gynecol 2012; 120:1013.
  52. Kao DP, Hsich E, Lindenfeld J. Characteristics, adverse events, and racial differences among delivering mothers with peripartum cardiomyopathy. JACC Heart Fail 2013; 1:409.
  53. Goland S, Modi K, Bitar F, et al. Clinical profile and predictors of complications in peripartum cardiomyopathy. J Card Fail 2009; 15:645.
  54. Cooper LT, Mather PJ, Alexis JD, et al. Myocardial recovery in peripartum cardiomyopathy: prospective comparison with recent onset cardiomyopathy in men and nonperipartum women. J Card Fail 2012; 18:28.
  55. Goland S, Bitar F, Modi K, et al. Evaluation of the clinical relevance of baseline left ventricular ejection fraction as a predictor of recovery or persistence of severe dysfunction in women in the United States with peripartum cardiomyopathy. J Card Fail 2011; 17:426.
  56. Blauwet LA, Libhaber E, Forster O, et al. Predictors of outcome in 176 South African patients with peripartum cardiomyopathy. Heart 2013; 99:308.
  57. Demakis JG, Rahimtoola SH, Sutton GC, et al. Natural course of peripartum cardiomyopathy. Circulation 1971; 44:1053.
  58. Fett JD, Sannon H, Thélisma E, et al. Recovery from severe heart failure following peripartum cardiomyopathy. Int J Gynaecol Obstet 2009; 104:125.
  59. Chapa JB, Heiberger HB, Weinert L, et al. Prognostic value of echocardiography in peripartum cardiomyopathy. Obstet Gynecol 2005; 105:1303.
  60. Hu CL, Li YB, Zou YG, et al. Troponin T measurement can predict persistent left ventricular dysfunction in peripartum cardiomyopathy. Heart 2007; 93:488.
  61. Blauwet LA, Delgado-Montero A, Ryo K, et al. Right Ventricular Function in Peripartum Cardiomyopathy at Presentation Is Associated With Subsequent Left Ventricular Recovery and Clinical Outcomes. Circ Heart Fail 2016; 9.
  62. Haghikia A, Röntgen P, Vogel-Claussen J, et al. Prognostic implication of right ventricular involvement in peripartum cardiomyopathy: a cardiovascular magnetic resonance study. ESC Heart Fail 2015; 2:139.
  63. Dorbala S, Brozena S, Zeb S, et al. Risk stratification of women with peripartum cardiomyopathy at initial presentation: a dobutamine stress echocardiography study. J Am Soc Echocardiogr 2005; 18:45.
  64. Barbosa MM, Freire CM, Nascimento BR, et al. Rest left ventricular function and contractile reserve by dobutamine stress echocardiography in peripartum cardiomyopathy. Rev Port Cardiol 2012; 31:287.
  65. Kamiya CA, Kitakaze M, Ishibashi-Ueda H, et al. Different characteristics of peripartum cardiomyopathy between patients complicated with and without hypertensive disorders. -Results from the Japanese Nationwide survey of peripartum cardiomyopathy-. Circ J 2011; 75:1975.
  66. McNamara DM, Elkayam U, Alharethi R, et al. Clinical Outcomes for Peripartum Cardiomyopathy in North America: Results of the IPAC Study (Investigations of Pregnancy-Associated Cardiomyopathy). J Am Coll Cardiol 2015; 66:905.
  67. Elkayam U, Tummala PP, Rao K, et al. Maternal and fetal outcomes of subsequent pregnancies in women with peripartum cardiomyopathy. N Engl J Med 2001; 344:1567.
  68. Sutton MS, Cole P, Plappert M, et al. Effects of subsequent pregnancy on left ventricular function in peripartum cardiomyopathy. Am Heart J 1991; 121:1776.
  69. Sliwa K, Forster O, Zhanje F, et al. Outcome of subsequent pregnancy in patients with documented peripartum cardiomyopathy. Am J Cardiol 2004; 93:1441.
  70. Fett JD, Christie LG, Murphy JG. Brief communication: Outcomes of subsequent pregnancy after peripartum cardiomyopathy: a case series from Haiti. Ann Intern Med 2006; 145:30.
  71. Hilfiker-Kleiner D, Haghikia A, Masuko D, et al. Outcome of subsequent pregnancies in patients with a history of peripartum cardiomyopathy. Eur J Heart Fail 2017.