UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Medline ® Abstracts for References 27,28,64

of 'Perioperative management of patients receiving anticoagulants'

27
TI
Antithrombotic therapy in atrial fibrillation: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).
AU
Singer DE, Albers GW, Dalen JE, Fang MC, Go AS, Halperin JL, Lip GYH, Manning WJ
SO
Chest. 2008;133(6 Suppl):546S.
 
This chapter about antithrombotic therapy in atrial fibrillation (AF) is part of the American College of Chest Physicians Evidence-Based Guidelines Clinical Practice Guidelines (8th Edition). Grade 1 recommendations indicate that most patients would make the same choice and Grade 2 suggests that individual patient's values may lead to different choices (for a full understanding of the grading see Guyatt et al, CHEST 2008; 133[suppl]:123S-131S). Among the key recommendations in this chapter are the following (all vitamin K antagonist [VKA]recommendations have a target international normalized ratio [INR]of 2.5; range 2.0-3.0, unless otherwise noted). In patients with AF, including those with paroxysmal AF, who have had a prior ischemic stroke, transient ischemic attack (TIA), or systemic embolism, we recommend long-term anticoagulation with an oral VKA, such as warfarin, because of the high risk of future ischemic stroke faced by this set of patients (Grade 1A). In patients with AF, including those with paroxysmal AF, who have two or more of the risk factors for future ischemic stroke listed immediately below, we recommend long-term anticoagulation with an oral VKA (Grade 1A). Two or more of the following risk factors apply: age>75 years, history of hypertension,diabetes mellitus, moderately or severely impaired left ventricular systolic function and/or heart failure. In patients with AF, including those with paroxysmal AF, with only one of the risk factors listed immediately above, we recommend long-term antithrombotic therapy (Grade 1A), either as anticoagulation with an oral VKA, such as warfarin (Grade 1A), or as aspirin, at a dose of 75-325 mg/d (Grade 1B). In these patients at intermediate risk of ischemic stroke we suggest a VKA rather than aspirin (Grade 2A). In patients with AF, including those with paroxysmal AF, age<or =75 years and with none of the other risk factors listed above, we recommend long-term aspirin therapy at a dose of 75-325 mg/d (Grade 1B), because of their low risk of ischemic stroke. For patients with atrial flutter, we recommend that antithrombotic therapy decisions follow the same risk-based recommendations as for AF (Grade 1C). For patients with AF and mitral stenosis, we recommend long-term anticoagulation with an oral VKA (Grade 1B). For patients with AF and prosthetic heart valves we recommend long-term anticoagulation with an oral VKA at an intensity appropriate for the specific type of prosthesis (Grade 1B). See CHEST 2008; 133(suppl):593S-629S. For patients with AF of>or =48 h or of unknown duration for whom pharmacologic or electrical cardioversion is planned, we recommend anticoagulation with an oral VKA, such as warfarin, for 3 weeks before elective cardioversion and for at least 4 weeks after sinus rhythm has been maintained (Grade 1C). For patients with AF of>or = 48 h or of unknown duration undergoing pharmacological or electrical cardioversion, we also recommend either immediate anticoagulation with unfractionated IV heparin, or low-molecular-weight heparin (LMWH), or at least 5 days of warfarin by the time of cardioversion (achieving an INR of 2.0-3.0) as well as a screening multiplane transesophageal echocardiography (TEE). If no thrombus is seen, cardioversion is successful, and sinus rhythm is maintained, we recommend anticoagulation for at least 4 weeks. If a thrombus is seen on TEE, then cardioversion should be postponed and anticoagulation should be continued indefinitely. We recommend obtaining a repeat TEE before attempting later cardioversion (Grade 1B addressing the equivalence of TEE-guided vs non-TEE-guided cardioversion). For patients with AF of known duration<48 h, we suggest cardioversion without prolonged anticoagulation (Grade 2C). However, in patients without contraindications to anticoagulation, we suggest beginning IV heparin or LMWH at presentation (Grade 2C).
AD
From the Clinical Epidemiology Unit, General Medicine Division, Massachusetts General Hospital, Boston, MA. Electronic address: dsinger@partners.org.
PMID
28
TI
Valvular and structural heart disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition).
AU
Salem DN, O'Gara PT, Madias C, Pauker SG
SO
Chest. 2008;133(6 Suppl):593S.
 
This chapter about antithrombotic therapy for valvular heart disease is part of the American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Grade 1 recommendations are strong and indicate that the benefits do, or do not, outweigh risks, burden, and costs. Grade 2 suggests that individual patient values might lead to different choices (for a full understanding of the grading see Guyatt et al, CHEST 2008; 133[suppl]:123S-131S). Among the key recommendations in this chapter are the following: for patients with rheumatic mitral valve disease complicated singly or in combination by the presence of atrial fibrillation (AF), previous systemic embolism, or left atrial thrombus, we recommend vitamin K antagonist (VKA) therapy (Grade 1A). For patients with rheumatic mitral valve disease and normal sinus rhythm, without left atrial enlargement, we do not suggest antithrombotic therapy unless a separate indication exists (Grade 2C). For patients with mitral valve prolapse (MVP), not complicated by AF, who have not had systemic embolism, unexplained transient ischemic attacks, or ischemic stroke, we recommend against antithrombotic therapy (Grade 1C). In patients with mitral annular calcification complicated by systemic embolism or ischemic stroke, we recommend antiplatelet agent (APA) therapy (Grade 1B). For patients with isolated calcific aortic valve disease, we suggest against antithrombotic therapy (Grade 2C). But, for those with aortic valve disease who have experienced ischemic stroke, we suggest APA therapy (Grade 2C). For patients with stroke associated with aortic atherosclerotic lesions, we recommend low-dose aspirin (ASA) therapy (Grade 1C). For patients with cryptogenic ischemic stroke and a patent foramen ovale (PFO), we recommend APA therapy (Grade 1A). For patients with mechanical heart valves, we recommend VKA therapy (Grade 1A). For patients with mechanical heart valves and history of vascular disease or who have additional risk factors for thromboembolism, we recommend the addition of low-dose aspirin ASA to VKA therapy (Grade 1B). We suggest ASA not be added to long-term VKA therapy in patients with mechanical heart valves who are at particularly high risk of bleeding (Grade 2C). For patients with bioprosthetic heart valves, we recommend ASA (Grade 1B). For patients with bioprosthetic heart valves and additional risk factors for thromboembolism, we recommend VKA therapy (Grade 1C). For patients with infective endocarditis, we recommend against antithrombotic therapy, unless a separate indication exists (Grade 1B).
AD
Department of Medicine, Tufts-New England Medical Center, Boston, MA. Electronic address: dsalem@tufts-nemc.org.
PMID
64
TI
The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.
AU
Ansell J, Hirsh J, Poller L, Bussey H, Jacobson A, Hylek E
SO
Chest. 2004;126(3 Suppl):204S.
 
This article concerning the pharmacokinetics and pharmacodynamics of vitamin K antagonists (VKAs) is part of the Seventh American College of Chest Physicians Conference on Antithrombotic and Thrombolytic Therapy: Evidence-Based Guidelines. The article describes the antithrombotic effect of VKAs, the monitoring of anticoagulation intensity, the clinical applications of VKA therapy, and the optimal therapeutic range of VKAs, and provides specific management recommendations. Grade 1 recommendations are strong, and indicate that the benefits do, or do not, outweigh the risks, burdens, and costs. Grade 2 suggests that individual patient's values may lead to different choices (for a full understanding of the grading see Guyatt et al, CHEST 2004; 126:179S-187S). Among the key recommendations in this article are the following: for dosing of VKAs, we suggest the initiation of oral anticoagulation therapy with doses between 5 and 10 mg for the first 1 or 2 days for most individuals, with subsequent dosing based on the international normalized ratio (INR) response (Grade 2B). In the elderly and in other patient subgroups with an elevated bleeding risk, we suggest a starting dose at<or = 5 mg (Grade 2C). We recommend basing subsequent doses after the initial two or three doses on the results of INR monitoring (Grade 1C). The article alsoincludes several specific recommendations for the management of patients with INRs above the therapeutic range and for patients requiring invasive procedures. For example, in patients with mild to moderately elevated INRs without major bleeding, we suggest that when vitamin K is to be given it be administered orally rather than subcutaneously (Grade 1A). For the management of patients with a low risk of thromboembolism, we suggest stopping warfarin therapy approximately 4 days before they undergo surgery (Grade 2C). For patients with a high risk of thromboembolism, we suggest stopping warfarin therapy approximately 4 days before surgery, to allow the INR to return to normal, and beginning therapy with full-dose unfractionated heparin or full-dose low-molecular-weight heparin as the INR falls (Grade 2C). In patients undergoing dental procedures, we suggest the use of tranexamic acid mouthwash (Grade 2B) or epsilon amino caproic acid mouthwash without interrupting anticoagulant therapy (Grade 2B) if there is a concern for local bleeding. For most patients who have a lupus inhibitor, we suggest a therapeutic target INR of 2.5 (range, 2.0 to 3.0) [Grade 2B]. In patients with recurrent thromboembolic events with a therapeutic INR or other additional risk factors, we suggest a target INR of 3.0 (range, 2.5 to 3.5) [Grade 2C]. As models of anticoagulation monitoring and management, we recommend that clinicians incorporate patient education, systematic INR testing, tracking, and follow-up, and good communication with patients concerning results and dosing decisions (Grade 1C+).
AD
Department of Medicine, Boston University Medical Center, 88 E Newton St, Boston, MA 02118, USA. jack.ansell@bmc.org
PMID