Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®

Parathyroid hormone therapy for osteoporosis

Clifford J Rosen, MD
Section Editor
Marc K Drezner, MD
Deputy Editor
Jean E Mulder, MD


Parathyroid hormone (PTH) is an 84-amino acid polypeptide secreted by the parathyroid glands in response to relatively small changes in serum calcium (figure 1). Like all peptide hormones it has an N-terminal and C-terminal region. The first two amino acids in the N-terminal region of the molecule are obligatory for activation of the PTH 1 receptor (PTH1r), a membrane surface receptor expressed in multiple tissues including cartilage, bone, breast and kidney. While circulating, the intact 1-84 PTH peptide can be cleaved to several fragments at various tissues, although it is unclear if these fragments have intrinsic biologic activity. On the other hand, recombinant PTH 1-31 and 1-34 retain all of the biologic activity of the intact peptide (1-84) [1].

PTH is one of the two major hormones modulating calcium and phosphate homeostasis, the other being calcitriol (1,25-dihydroxyvitamin D). With respect to calcium, PTH is most responsible for maintaining serum ionized calcium concentrations within a narrow range, through its actions to stimulate renal tubular calcium reabsorption and bone resorption. Chronic exposure to high serum PTH concentrations (as seen with primary or secondary hyperparathyroidism) results in bone resorption. Given this observation, exogenous PTH would seem to be an unlikely candidate for the treatment of osteoporosis. However, intermittent administration of recombinant human PTH (both full-length 1-84 or fragment 1-34) has been shown to stimulate bone formation more than resorption, at least over the first 12 months of treatment.

This topic review will discuss the use of recombinant PTH as a therapy for osteoporosis. PTH physiology and other treatments for osteoporosis are reviewed in detail elsewhere. (See "Parathyroid hormone secretion and action" and "Overview of the management of osteoporosis in postmenopausal women" and "Treatment of osteoporosis in men".)


Anabolic therapy for bone — PTH 1-34 (teriparatide [Forteo]) belongs to a class of anti-osteoporosis drugs, the so-called “anabolic” agents [2]. These drugs, in contrast to antiresorptive agents, stimulate bone formation, activate bone remodeling and are administered subcutaneously as daily injections [3]. Other agents in this class include growth hormone (GH), insulin-like growth factor-I (IGF-I) and parathyroid hormone-related peptide (PTHrp). PTH 1-34, teriparatide, at a dose of 20 mcg/day is available in the United States and Europe for the treatment of severe osteoporosis in both men and women. It has been shown to reduce the risk of vertebral and non-vertebral fracture. (See 'PTH effect on fracture' below.)

A PTH 1-84 preparation is available in the United States for patients with chronic hypoparathyroidism who cannot maintain stable serum and urinary calcium levels with calcium and vitamin D supplementation. PTH 1-84 reduces the risk of vertebral fracture. However, non-vertebral fracture efficacy has only been established for teriparatide (PTH 1-34).


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Jun 2016. | This topic last updated: Sep 11, 2015.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
  1. Hodsman AB, Bauer DC, Dempster DW, et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 2005; 26:688.
  2. Rosen CJ, Bilezikian JP. Clinical review 123: Anabolic therapy for osteoporosis. J Clin Endocrinol Metab 2001; 86:957.
  3. Rosen CJ. The cellular and clinical parameters of anabolic therapy for osteoporosis. Crit Rev Eukaryot Gene Expr 2003; 13:25.
  4. Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 2003; 349:1207.
  5. Finkelstein JS, Hayes A, Hunzelman JL, et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 2003; 349:1216.
  6. Kurland ES, Cosman F, McMahon DJ, et al. Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 2000; 85:3069.
  7. Dobnig H, Sipos A, Jiang Y, et al. Early changes in biochemical markers of bone formation correlate with improvements in bone structure during teriparatide therapy. J Clin Endocrinol Metab 2005; 90:3970.
  8. Hodsman AB, Fraher LJ, Ostbye T, et al. An evaluation of several biochemical markers for bone formation and resorption in a protocol utilizing cyclical parathyroid hormone and calcitonin therapy for osteoporosis. J Clin Invest 1993; 91:1138.
  9. McClung MR, San Martin J, Miller PD, et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med 2005; 165:1762.
  10. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344:1434.
  11. Rosen CJ, Ackert-Bicknell CL, Adamo ML, et al. Congenic mice with low serum IGF-I have increased body fat, reduced bone mineral density, and an altered osteoblast differentiation program. Bone 2004; 35:1046.
  12. Lindsay R, Nieves J, Formica C, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 1997; 350:550.
  13. Dobnig H, Stepan V, Leb G, et al. Recovery from severe osteoporosis following cure from ectopic ACTH syndrome caused by an appendix carcinoid. J Intern Med 1996; 239:365.
  14. Krane SM. Identifying genes that regulate bone remodeling as potential therapeutic targets. J Exp Med 2005; 201:841.
  15. Partridge AW, Liu S, Kim S, et al. Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. J Biol Chem 2005; 280:7294.
  16. Buxton EC, Yao W, Lane NE. Changes in serum receptor activator of nuclear factor-kappaB ligand, osteoprotegerin, and interleukin-6 levels in patients with glucocorticoid-induced osteoporosis treated with human parathyroid hormone (1-34). J Clin Endocrinol Metab 2004; 89:3332.
  17. Sowa H, Kaji H, Iu MF, et al. Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor beta in osteoblasts. J Biol Chem 2003; 278:52240.
  18. Krishnan V, Moore TL, Ma YL, et al. Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol Endocrinol 2003; 17:423.
  19. Lindsay R, Zhou H, Cosman F, et al. Effects of a one-month treatment with PTH(1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res 2007; 22:495.
  20. Hodsman AB, Kisiel M, Adachi JD, et al. Histomorphometric evidence for increased bone turnover without change in cortical thickness or porosity after 2 years of cyclical hPTH(1-34) therapy in women with severe osteoporosis. Bone 2000; 27:311.
  21. Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 2003; 278:50259.
  22. Sato M, Vahle J, Schmidt A, et al. Abnormal bone architecture and biomechanical properties with near-lifetime treatment of rats with PTH. Endocrinology 2002; 143:3230.
  23. Jerome CP, Burr DB, Van Bibber T, et al. Treatment with human parathyroid hormone (1-34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 2001; 28:150.
  24. Misof BM, Roschger P, Cosman F, et al. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 2003; 88:1150.
  25. Zanchetta JR, Bogado CE, Ferretti JL, et al. Effects of teriparatide [recombinant human parathyroid hormone (1-34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 2003; 18:539.
  26. Parfitt AM. Parathyroid hormone and periosteal bone expansion. J Bone Miner Res 2002; 17:1741.
  27. Orwoll ES, Scheele WH, Paul S, et al. The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 2003; 18:9.
  28. Chen P, Satterwhite JH, Licata AA, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res 2005; 20:962.
  29. Greenspan SL, Bone HG, Ettinger MP, et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med 2007; 146:326.
  30. Hodsman AB, Hanley DA, Ettinger MP, et al. Efficacy and safety of human parathyroid hormone-(1-84) in increasing bone mineral density in postmenopausal osteoporosis. J Clin Endocrinol Metab 2003; 88:5212.
  31. Rittmaster RS, Bolognese M, Ettinger MP, et al. Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab 2000; 85:2129.
  32. Bauer DC, Garnero P, Bilezikian JP, et al. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 2006; 91:1370.
  33. Lane NE, Sanchez S, Genant HK, et al. Short-term increases in bone turnover markers predict parathyroid hormone-induced spinal bone mineral density gains in postmenopausal women with glucocorticoid-induced osteoporosis. Osteoporos Int 2000; 11:434.
  34. Bogado, CE, Zanchetta, JR, Mango, A, et al. Effects of Parathyroid Hormone 1-84 on Cortical and Trabecular Bone at the Hip as Assessed by QCT: Results at 18 months from the TOP Study. J Bone Miner Res 2005; 20:S22.
  35. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996; 348:1535.
  36. McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 2001; 344:333.
  37. Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 2002; 112:281.
  38. Chen P, Miller PD, Delmas PD, et al. Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res 2006; 21:1785.
  39. Nevitt MC, Chen P, Dore RK, et al. Reduced risk of back pain following teriparatide treatment: a meta-analysis. Osteoporos Int 2006; 17:273.
  40. Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 1999; 14:960.
  41. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 2010; 25:404.
  42. Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am 2011; 93:1583.
  43. Finkelstein JS, Leder BZ, Burnett SM, et al. Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men. J Clin Endocrinol Metab 2006; 91:2882.
  44. Walker MD, Cusano NE, Sliney J Jr, et al. Combination therapy with risedronate and teriparatide in male osteoporosis. Endocrine 2013; 44:237.
  45. Obermayer-Pietsch BM, Marin F, McCloskey EV, et al. Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment. J Bone Miner Res 2008; 23:1591.
  46. Cosman F, Wermers RA, Recknor C, et al. Effects of teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: differences between stopping and continuing the antiresorptive agent. J Clin Endocrinol Metab 2009; 94:3772.
  47. Boonen S, Marin F, Obermayer-Pietsch B, et al. Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 2008; 93:852.
  48. Miller PD, Delmas PD, Lindsay R, et al. Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate. J Clin Endocrinol Metab 2008; 93:3785.
  49. Tsai JN, Uihlein AV, Lee H, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 2013; 382:50.
  50. Leder BZ, Tsai JN, Uihlein AV, et al. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab 2014; 99:1694.
  51. Ettinger B, San Martin J, Crans G, Pavo I. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res 2004; 19:745.
  52. Deal C, Omizo M, Schwartz EN, et al. Combination teriparatide and raloxifene therapy for postmenopausal osteoporosis: results from a 6-month double-blind placebo-controlled trial. J Bone Miner Res 2005; 20:1905.
  53. Cosman F, Nieves JW, Zion M, et al. Effect of prior and ongoing raloxifene therapy on response to PTH and maintenance of BMD after PTH therapy. Osteoporos Int 2008; 19:529.
  54. Cosman F, Nieves J, Woelfert L, et al. Parathyroid hormone added to established hormone therapy: effects on vertebral fracture and maintenance of bone mass after parathyroid hormone withdrawal. J Bone Miner Res 2001; 16:925.
  55. Roe EB, Sanchez SD, Cann CE, et al. PTH-induced increases in bone density are preserved with estrogen: results from a follow-up year in postmenopausal osteoporosis. J Bone Miner Res 2000; 15:S193.
  56. Lindsay R, Scheele WH, Neer R, et al. Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch Intern Med 2004; 164:2024.
  57. Black DM, Bilezikian JP, Ensrud KE, et al. One year of alendronate after one year of parathyroid hormone (1-84) for osteoporosis. N Engl J Med 2005; 353:555.
  58. Lane NE, Sanchez S, Modin GW, et al. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoid-induced osteoporosis: results of a randomized controlled clinical trial. J Bone Miner Res 2000; 15:944.
  59. Adami S, San Martin J, Muñoz-Torres M, et al. Effect of raloxifene after recombinant teriparatide [hPTH(1-34)] treatment in postmenopausal women with osteoporosis. Osteoporos Int 2008; 19:87.
  60. Eastell R, Nickelsen T, Marin F, et al. Sequential treatment of severe postmenopausal osteoporosis after teriparatide: final results of the randomized, controlled European Study of Forsteo (EUROFORS). J Bone Miner Res 2009; 24:726.
  61. Leder BZ, Tsai JN, Uihlein AV, et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet 2015; 386:1147.
  62. Finkelstein JS, Wyland JJ, Leder BZ, et al. Effects of teriparatide retreatment in osteoporotic men and women. J Clin Endocrinol Metab 2009; 94:2495.
  63. Cosman F, Nieves JW, Zion M, et al. Retreatment with teriparatide one year after the first teriparatide course in patients on continued long-term alendronate. J Bone Miner Res 2009; 24:1110.
  64. Kakaria PJ, Nashel DJ, Nylen ES. Debilitating muscle cramps after teriparatide therapy. Ann Intern Med 2005; 142:310.
  65. Vahle JL, Sato M, Long GG, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol 2002; 30:312.
  66. Harper KD, Krege JH, Marcus R, Mitlak BH. Osteosarcoma and teriparatide? J Bone Miner Res 2007; 22:334.
  67. Andrews EB, Gilsenan AW, Midkiff K, et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res 2012; 27:2429.
  68. Tashjian AH Jr, Chabner BA. Commentary on clinical safety of recombinant human parathyroid hormone 1-34 in the treatment of osteoporosis in men and postmenopausal women. J Bone Miner Res 2002; 17:1151.
  69. Liu H, Michaud K, Nayak S, et al. The cost-effectiveness of therapy with teriparatide and alendronate in women with severe osteoporosis. Arch Intern Med 2006; 166:1209.
  70. Cosman F, Nieves J, Zion M, et al. Daily and cyclic parathyroid hormone in women receiving alendronate. N Engl J Med 2005; 353:566.
  71. Fujita T, Inoue T, Morii H, et al. Effect of an intermittent weekly dose of human parathyroid hormone (1-34) on osteoporosis: a randomized double-masked prospective study using three dose levels. Osteoporos Int 1999; 9:296.
  72. Black DM, Bouxsein ML, Palermo L, et al. Randomized trial of once-weekly parathyroid hormone (1-84) on bone mineral density and remodeling. J Clin Endocrinol Metab 2008; 93:2166.
  73. Cosman F, Lane NE, Bolognese MA, et al. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J Clin Endocrinol Metab 2010; 95:151.
  74. Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis: 2001 update. American College of Rheumatology Ad Hoc Committee on Glucocorticoid-Induced Osteoporosis. Arthritis Rheum 2001; 44:1496.
  75. Finkelstein JS, Klibanski A, Arnold AL, et al. Prevention of estrogen deficiency-related bone loss with human parathyroid hormone-(1-34): a randomized controlled trial. JAMA 1998; 280:1067.
  76. Orwoll ES. Treatment of osteoporosis in men. Calcif Tissue Int 2004; 75:114.
  77. Winer KK, Ko CW, Reynolds JC, et al. Long-term treatment of hypoparathyroidism: a randomized controlled study comparing parathyroid hormone-(1-34) versus calcitriol and calcium. J Clin Endocrinol Metab 2003; 88:4214.
  78. Bashutski JD, Eber RM, Kinney JS, et al. Teriparatide and osseous regeneration in the oral cavity. N Engl J Med 2010; 363:2396.
  79. Hodsman A, Scientific Advisory Council of Osteoporosis Canada, Papaioannou A, et al. Clinical practice guidelines for the use of parathyroid hormone in the treatment of osteoporosis. CMAJ 2006; 175:48.
  80. Cranney A, Papaioannou A, Zytaruk N, et al. Parathyroid hormone for the treatment of osteoporosis: a systematic review. CMAJ 2006; 175:52.