Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Paragangliomas: Epidemiology, clinical presentation, diagnosis, and histology

Sally E Carty, MD, FACS
William F Young, Jr, MD, MSc
Derrick Lin, MD
Section Editors
Patrick Y Wen, MD
Jay S Loeffler, MD
André Lacroix, MD
Deputy Editor
Sadhna R Vora, MD


Paragangliomas are rare neuroendocrine tumors that arise from the extra-adrenal autonomic paraganglia, small organs consisting mainly of neuroendocrine cells that are derived from the embryonic neural crest and have the ability to secrete catecholamines (figure 1).

Paragangliomas are closely related to pheochromocytomas (which are sometimes referred to as intra-adrenal paragangliomas) [1] and are indistinguishable at the cellular level. Sympathetic paragangliomas usually secrete catecholamines and are located in the sympathetic paravertebral ganglia of thorax, abdomen, and pelvis. In contrast, most parasympathetic paragangliomas are nonfunctional and located along the glossopharyngeal and vagal nerves in the neck and at the base of the skull. Catecholamine-secreting paragangliomas often present clinically like pheochromocytomas with hypertension, episodic headache, sweating, and tachycardia. However, the distinction between pheochromocytoma and paraganglioma is an important one because of implications for associated neoplasms, risk for malignancy, and genetic testing.

Even with modern genetic testing, the majority of paragangliomas appear to be sporadic. However, approximately one-third to one-half (in recent series) [2,3] are associated with an inherited syndrome. Some hereditary paragangliomas, particularly those arising in the head and neck, have been linked to mutations in the genes encoding different subunits of the succinate dehydrogenase (SDH) enzyme complex. In addition, susceptibility to pheochromocytomas and paragangliomas is an established component of four genetic syndromes, multiple endocrine neoplasia types 2A and 2B (MEN2), neurofibromatosis type 1 (NF1), von Hippel Lindau (VHL), and Carney-Stratakis dyad.

This topic review will cover the epidemiology, risk factors, molecular pathogenesis, histology, clinical manifestations, diagnosis, and genetic screening issues of paragangliomas arising at a variety of sites in the body. Treatment of paragangliomas, and the genetics, clinical presentation, and treatment of pheochromocytomas are covered elsewhere. (See "Paragangliomas: Treatment of locoregional disease" and "Clinical presentation and diagnosis of pheochromocytoma" and "Pheochromocytoma in genetic disorders" and "Treatment of pheochromocytoma in adults" and "Pheochromocytoma in children".)


The terms used to describe paragangliomas have varied over time. An adrenal catecholamine-secreting tumor is widely referred to as “pheochromocytoma,” although the 2004 World Health Organization (WHO) classification of tumors of endocrine organs designated these tumors as “intra-adrenal paragangliomas” rather than pheochromocytomas [1]. Some authors use the term “extra-adrenal pheochromocytoma” to describe a catecholamine-secreting tumor that arises from sympathetic paraganglia outside of the adrenal gland. Others use the collective term pheochromocytoma to describe all tumors arising in the paraganglia of the abdomen (both adrenal and extra-adrenal) and thorax [4]. However, the 2004 WHO classification used the term “extra-adrenal paraganglioma” to denote an extra-adrenal tumor of sympathetic or parasympathetic paraganglia origin, regardless of secretory status [1]. For the purpose of this review, the term paraganglioma will be used to designate both functioning (catecholamine-secreting) and nonfunctioning tumors arising in the paraganglia outside of the adrenal gland, with the term pheochromocytoma limited to those tumors that arise in the adrenal glands.


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Jan 2017. | This topic last updated: Thu Jan 26 00:00:00 GMT 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Pathology and Genetics of Tumours of the Endocrine Organs. WHO Classification of Tumours, DeLellis RA, Lloyd RV, Heitz PU, Eng C. (Eds), IARC press, Lyon, France 2004.
  2. Burnichon N, Brière JJ, Libé R, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010; 19:3011.
  3. Fishbein L, Merrill S, Fraker DL, et al. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol 2013; 20:1444.
  4. Neumann HP, Pawlu C, Peczkowska M, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004; 292:943.
  5. Welander J, Söderkvist P, Gimm O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 2011; 18:R253.
  6. Barnes L, Tse LL, Hunt JL, Michaels L.. Tumours of the paraganglionic system: Introduction.. In: World Health Organization Classification of Tumours. Pathology & Genetics Head and Neck Tumours, Barnes L, Eveson JW, Reichart P, Sidransky D.. (Eds), IARC Press, Lyon, France 2005. p.362.
  7. Michaels L, Soucek S, Beale T, Sandison A. Jugulotympanic paraganglioma. In: World Health Organization Classification of Tumours. Pathology & Genetics Head and Neck Tumours , Lyon, France 2005. p.362., Barnes L, Eveson JW, Reichart P, Sidransky D. (Eds), IARC Press, Lyons, France 2005. p.366.
  8. van Duinen N, Steenvoorden D, Kema IP, et al. Increased urinary excretion of 3-methoxytyramine in patients with head and neck paragangliomas. J Clin Endocrinol Metab 2010; 95:209.
  9. McNicol AM. Update on tumours of the adrenal cortex, phaeochromocytoma and extra-adrenal paraganglioma. Histopathology 2011; 58:155.
  10. Erickson D, Kudva YC, Ebersold MJ, et al. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab 2001; 86:5210.
  11. Lee JA, Duh QY. Sporadic paraganglioma. World J Surg 2008; 32:683.
  12. Dannenberg H, Dinjens WN, Abbou M, et al. Frequent germ-line succinate dehydrogenase subunit D gene mutations in patients with apparently sporadic parasympathetic paraganglioma. Clin Cancer Res 2002; 8:2061.
  13. Ramlawi B, David EA, Kim MP, et al. Contemporary surgical management of cardiac paragangliomas. Ann Thorac Surg 2012; 93:1972.
  14. Brown ML, Zayas GE, Abel MD, et al. Mediastinal paragangliomas: the mayo clinic experience. Ann Thorac Surg 2008; 86:946.
  15. Armstrong MJ, Chiosea SI, Carty SE, et al. Thyroid paragangliomas are locally aggressive. Thyroid 2012; 22:88.
  16. Castelblanco E, Gallel P, Ros S, et al. Thyroid paraganglioma. Report of 3 cases and description of an immunohistochemical profile useful in the differential diagnosis with medullary thyroid carcinoma, based on complementary DNA array results. Hum Pathol 2012; 43:1103.
  17. Simpson LN, Hughes BD, Karikari IO, et al. Catecholamine-secreting paraganglioma of the thoracic spinal column: report of an unusual case and review of the literature. Neurosurgery 2012; 70:E1049.
  18. Matsumoto M, Abe K, Baba H, et al. Paraganglioma of the cauda equina: a report of two cases with unusual histopathological features. Clin Neuropathol 2012; 31:39.
  19. Beard CM, Sheps SG, Kurland LT, et al. Occurrence of pheochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin Proc 1983; 58:802.
  20. Chen H, Sippel RS, O'Dorisio MS, et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas 2010; 39:775.
  21. McNeil AR, Blok BH, Koelmeyer TD, et al. Phaeochromocytomas discovered during coronial autopsies in Sydney, Melbourne and Auckland. Aust N Z J Med 2000; 30:648.
  22. Sutton MG, Sheps SG, Lie JT. Prevalence of clinically unsuspected pheochromocytoma. Review of a 50-year autopsy series. Mayo Clin Proc 1981; 56:354.
  23. Al-Harthy M, Al-Harthy S, Al-Otieschan A, et al. Comparison of pheochromocytomas and abdominal and pelvic paragangliomas with head and neck paragangliomas. Endocr Pract 2009; 15:194.
  24. Eisenhofer G, Timmers HJ, Lenders JW, et al. Age at diagnosis of pheochromocytoma differs according to catecholamine phenotype and tumor location. J Clin Endocrinol Metab 2011; 96:375.
  25. O'Riordain DS, Young WF Jr, Grant CS, et al. Clinical spectrum and outcome of functional extraadrenal paraganglioma. World J Surg 1996; 20:916.
  26. Boedeker CC, Neumann HP, Maier W, et al. Malignant head and neck paragangliomas in SDHB mutation carriers. Otolaryngol Head Neck Surg 2007; 137:126.
  27. Neumann HP, Erlic Z, Boedeker CC, et al. Clinical predictors for germline mutations in head and neck paraganglioma patients: cost reduction strategy in genetic diagnostic process as fall-out. Cancer Res 2009; 69:3650.
  28. Drovdlic CM, Myers EN, Peters JA, et al. Proportion of heritable paraganglioma cases and associated clinical characteristics. Laryngoscope 2001; 111:1822.
  29. Galan SR, Kann PH. Genetics and molecular pathogenesis of pheochromocytoma and paraganglioma. Clin Endocrinol (Oxf) 2013; 78:165.
  30. Neumann HP, Bausch B, McWhinney SR, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002; 346:1459.
  31. Mannelli M, Castellano M, Schiavi F, et al. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 2009; 94:1541.
  32. Laird AM, Gauger PG, Doherty GM, Miller BS. Paraganglioma: not just an extra-adrenal pheochromocytoma. Langenbecks Arch Surg 2012; 397:247.
  33. Hensen EF, Siemers MD, Jansen JC, et al. Mutations in SDHD are the major determinants of the clinical characteristics of Dutch head and neck paraganglioma patients. Clin Endocrinol (Oxf) 2011; 75:650.
  34. Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000; 287:848.
  35. Niemann S, Müller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 2000; 26:268.
  36. Astuti D, Hart-Holden N, Latif F, et al. Genetic analysis of mitochondrial complex II subunits SDHD, SDHB and SDHC in paraganglioma and phaeochromocytoma susceptibility. Clin Endocrinol (Oxf) 2003; 59:728.
  37. Astuti D, Latif F, Dallol A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001; 69:49.
  38. Lee SC, Chionh SB, Chong SM, Taschner PE. Hereditary paraganglioma due to the SDHD M1I mutation in a second Chinese family: a founder effect? Laryngoscope 2003; 113:1055.
  39. Astuti D, Douglas F, Lennard TW, et al. Germline SDHD mutation in familial phaeochromocytoma. Lancet 2001; 357:1181.
  40. Benn DE, Gimenez-Roqueplo AP, Reilly JR, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab 2006; 91:827.
  41. Young WF Jr, Abboud AL. Editorial: paraganglioma--all in the family. J Clin Endocrinol Metab 2006; 91:790.
  42. van der Mey AG, Maaswinkel-Mooy PD, Cornelisse CJ, et al. Genomic imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet 1989; 2:1291.
  43. Vanharanta S, Buchta M, McWhinney SR, et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 2004; 74:153.
  44. Ricketts CJ, Forman JR, Rattenberry E, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat 2010; 31:41.
  45. Cerecer-Gil NY, Figuera LE, Llamas FJ, et al. Mutation of SDHB is a cause of hypoxia-related high-altitude paraganglioma. Clin Cancer Res 2010; 16:4148.
  46. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 2003; 63:5615.
  47. Srirangalingam U, Walker L, Khoo B, et al. Clinical manifestations of familial paraganglioma and phaeochromocytomas in succinate dehydrogenase B (SDH-B) gene mutation carriers. Clin Endocrinol (Oxf) 2008; 69:587.
  48. Venkatesan AM, Trivedi H, Adams KT, et al. Comparison of clinical and imaging features in succinate dehydrogenase-positive versus sporadic paragangliomas. Surgery 2011; 150:1186.
  49. Foo SH, Chan SP, Ananda V, Rajasingam V. Dopamine-secreting phaeochromocytomas and paragangliomas: clinical features and management. Singapore Med J 2010; 51:e89.
  50. Schiavi F, Boedeker CC, Bausch B, et al. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA 2005; 294:2057.
  51. Bickmann JK, Sollfrank S, Schad A, et al. Phenotypic variability and risk of malignancy in SDHC-linked paragangliomas: lessons from three unrelated cases with an identical germline mutation (p.Arg133*). J Clin Endocrinol Metab 2014; 99:E489.
  52. Jiménez C, Cote G, Arnold A, Gagel RF. Review: Should patients with apparently sporadic pheochromocytomas or paragangliomas be screened for hereditary syndromes? J Clin Endocrinol Metab 2006; 91:2851.
  53. Kunst HP, Rutten MH, de Mönnink JP, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res 2011; 17:247.
  54. Bayley JP, Kunst HP, Cascon A, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 2010; 11:366.
  55. Korpershoek E, Favier J, Gaal J, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011; 96:E1472.
  56. Kehrer-Sawatzki H, Cooper DN. Mosaicism in sporadic neurofibromatosis type 1: variations on a theme common to other hereditary cancer syndromes? J Med Genet 2008; 45:622.
  57. Walther MM, Herring J, Enquist E, et al. von Recklinghausen's disease and pheochromocytomas. J Urol 1999; 162:1582.
  58. Woodward ER, Eng C, McMahon R, et al. Genetic predisposition to phaeochromocytoma: analysis of candidate genes GDNF, RET and VHL. Hum Mol Genet 1997; 6:1051.
  59. Nielsen SM, Rubinstein WS, Thull DL, et al. Genotype-phenotype correlations of pheochromocytoma in two large von Hippel-Lindau (VHL) type 2A kindreds with different missense mutations. Am J Med Genet A 2011; 155A:168.
  60. Nielsen SM, Rubinstein WS, Thull DL, et al. Long-term outcomes, branch-specific expressivity, and disease-related mortality in von Hippel-Lindau type 2A. Fam Cancer 2011; 10:701.
  61. Stratakis CA, Carney JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J Intern Med 2009; 266:43.
  62. Pasini B, McWhinney SR, Bei T, et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008; 16:79.
  63. McWhinney SR, Pasini B, Stratakis CA, International Carney Triad and Carney-Stratakis Syndrome Consortium. Familial gastrointestinal stromal tumors and germ-line mutations. N Engl J Med 2007; 357:1054.
  64. Janeway KA, Kim SY, Lodish M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 2011; 108:314.
  65. Carney JA. Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney Triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc 1999; 74:543.
  66. Matyakhina L, Bei TA, McWhinney SR, et al. Genetics of carney triad: recurrent losses at chromosome 1 but lack of germline mutations in genes associated with paragangliomas and gastrointestinal stromal tumors. J Clin Endocrinol Metab 2007; 92:2938.
  67. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011; 43:663.
  68. Burnichon N, Cascón A, Schiavi F, et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 2012; 18:2828.
  69. Saldana MJ, Salem LE, Travezan R. High altitude hypoxia and chemodectomas. Hum Pathol 1973; 4:251.
  70. Khan Q, Heath D, Smith P, Norboo T. The histology of the carotid bodies in highlanders from Ladakh. Int J Biometeorol 1988; 32:254.
  71. Rodríguez-Cuevas S, López-Garza J, Labastida-Almendaro S. Carotid body tumors in inhabitants of altitudes higher than 2000 meters above sea level. Head Neck 1998; 20:374.
  72. Arias-Stella J, Bustos F. Chronic hypoxia and chemodectomas in bovines at high altitudes. Arch Pathol Lab Med 1976; 100:636.
  73. Amar L, Bertherat J, Baudin E, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005; 23:8812.
  74. Yao L, Schiavi F, Cascon A, et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 2010; 304:2611.
  75. Proye C, Fossati P, Fontaine P, et al. Dopamine-secreting pheochromocytoma: an unrecognized entity? Classification of pheochromocytomas according to their type of secretion. Surgery 1986; 100:1154.
  76. Jochmanová I, Yang C, Zhuang Z, Pacak K. Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J Natl Cancer Inst 2013; 105:1270.
  77. Clifford SC, Cockman ME, Smallwood AC, et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 2001; 10:1029.
  78. Favier J, Brière JJ, Burnichon N, et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS One 2009; 4:e7094.
  79. Pollard PJ, El-Bahrawy M, Poulsom R, et al. Expression of HIF-1alpha, HIF-2alpha (EPAS1), and their target genes in paraganglioma and pheochromocytoma with VHL and SDH mutations. J Clin Endocrinol Metab 2006; 91:4593.
  80. López-Jiménez E, de Campos JM, Kusak EM, et al. SDHC mutation in an elderly patient without familial antecedents. Clin Endocrinol (Oxf) 2008; 69:906.
  81. Favier J, Gimenez-Roqueplo AP. Pheochromocytomas: the (pseudo)-hypoxia hypothesis. Best Pract Res Clin Endocrinol Metab 2010; 24:957.
  82. Eisenhofer G, Huynh TT, Pacak K, et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 2004; 11:897.
  83. Dahia PL, Ross KN, Wright ME, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005; 1:72.
  84. Hensen EF, Goeman JJ, Oosting J, et al. Similar gene expression profiles of sporadic, PGL2-, and SDHD-linked paragangliomas suggest a common pathway to tumorigenesis. BMC Med Genomics 2009; 2:25.
  85. Pacak K, Jochmanova I, Prodanov T, et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol 2013; 31:1690.
  86. Comino-Méndez I, de Cubas AA, Bernal C, et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet 2013; 22:2169.
  87. Zhuang Z, Yang C, Lorenzo F, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 2012; 367:922.
  88. Taïeb D, Yang C, Delenne B, et al. First report of bilateral pheochromocytoma in the clinical spectrum of HIF2A-related polycythemia-paraganglioma syndrome. J Clin Endocrinol Metab 2013; 98:E908.
  89. Hu K, Persky MS. Multidisciplinary management of paragangliomas of the head and neck, Part 1. Oncology (Williston Park) 2003; 17:983.
  90. Persky MS, Setton A, Niimi Y, et al. Combined endovascular and surgical treatment of head and neck paragangliomas--a team approach. Head Neck 2002; 24:423.
  91. Barnes L, Taylor SR. Carotid body paragangliomas. A clinicopathologic and DNA analysis of 13 tumors. Arch Otolaryngol Head Neck Surg 1990; 116:447.
  92. Kliewer KE, Wen DR, Cancilla PA, Cochran AJ. Paragangliomas: assessment of prognosis by histologic, immunohistochemical, and ultrastructural techniques. Hum Pathol 1989; 20:29.
  93. Kliewer KE, Cochran AJ. A review of the histology, ultrastructure, immunohistology, and molecular biology of extra-adrenal paragangliomas. Arch Pathol Lab Med 1989; 113:1209.
  94. Eisenhofer G, Tischler AS, de Krijger RR. Diagnostic tests and biomarkers for pheochromocytoma and extra-adrenal paraganglioma: from routine laboratory methods to disease stratification. Endocr Pathol 2012; 23:4.
  95. Barnes L, Taylor SR. Vagal paragangliomas: a clinical, pathological, and DNA assessment. Clin Otolaryngol Allied Sci 1991; 16:376.
  96. Clarke MR, Weyant RJ, Watson CG, Carty SE. Prognostic markers in pheochromocytoma. Hum Pathol 1998; 29:522.
  97. Pinato DJ, Ramachandran R, Toussi ST, et al. Immunohistochemical markers of the hypoxic response can identify malignancy in phaeochromocytomas and paragangliomas and optimize the detection of tumours with VHL germline mutations. Br J Cancer 2013; 108:429.
  98. Linnoila RI, Keiser HR, Steinberg SM, Lack EE. Histopathology of benign versus malignant sympathoadrenal paragangliomas: clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol 1990; 21:1168.
  99. Kimura N, Watanabe T, Noshiro T, et al. Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extra-adrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol 2005; 16:23.
  100. Thompson LD. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 2002; 26:551.
  101. Strong VE, Kennedy T, Al-Ahmadie H, et al. Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery 2008; 143:759.
  102. de Wailly P, Oragano L, Radé F, et al. Malignant pheochromocytoma: new malignancy criteria. Langenbecks Arch Surg 2012; 397:239.
  103. Agarwal A, Mehrotra PK, Jain M, et al. Size of the tumor and pheochromocytoma of the adrenal gland scaled score (PASS): can they predict malignancy? World J Surg 2010; 34:3022.
  104. Gao B, Meng F, Bian W, et al. Development and validation of pheochromocytoma of the adrenal gland scaled score for predicting malignant pheochromocytomas. Urology 2006; 68:282.
  105. Wu D, Tischler AS, Lloyd RV, et al. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol 2009; 33:599.
  106. Jackson CG, Glasscock ME 3rd, Harris PF. Glomus Tumors. Diagnosis, classification, and management of large lesions. Arch Otolaryngol 1982; 108:401.
  107. Shamblin WR, ReMine WH, Sheps SG, Harrison EG Jr. Carotid body tumor (chemodectoma). Clinicopathologic analysis of ninety cases. Am J Surg 1971; 122:732.
  108. McCabe BF, Fletcher M. Selection of therapy of glomus jugulare tumors. Arch Otolaryngol 1969; 89:156.
  109. Oldring D, Fisch U. Glomus tumors of the temporal region: surgical therapy. Am J Otol 1979; 1:7.
  110. Fayad JN, Keles B, Brackmann DE. Jugular foramen tumors: clinical characteristics and treatment outcomes. Otol Neurotol 2010; 31:299.
  111. Fisch U, Mattox D. Microsurgery of the skull base, Thieme, Stuttgart, New York 1988. p.149.
  112. Moore G, Yarington CT Jr, Mangham CA Jr. Vagal body tumors: diagnosis and treatment. Laryngoscope 1986; 96:533.
  113. Eriksen C, Girdhar-Gopal H, Lowry LD. Vagal paragangliomas: a report of nine cases. Am J Otolaryngol 1991; 12:278.
  114. Brankovic B, Radisavljevic M, Radojkovic M, et al. Nonfunctional retroperitoneal paraganglioma presenting as acute upper gastrointestinal hemorrhage. Hepatogastroenterology 2010; 57:288.
  115. King KS, Darmani NA, Hughes MS, et al. Exercise-induced nausea and vomiting: another sign and symptom of pheochromocytoma and paraganglioma. Endocrine 2010; 37:403.
  116. Patetsios P, Gable DR, Garrett WV, et al. Management of carotid body paragangliomas and review of a 30-year experience. Ann Vasc Surg 2002; 16:331.
  117. Mancini L, Roncaroli F. [Malignant paraganglioma of the posterior mediastinum with 27 years follow-up]. Pathologica 1997; 89:184.
  118. Mayer R, Fruhwirth J, Beham A, et al. Radiotherapy as adjunct to surgery for malignant carotid body paragangliomas presenting with lymph node metastases. Strahlenther Onkol 2000; 176:356.
  119. Robertson DI, Cooney TP. Malignant carotid body paraganglioma: light and electron microscopic study of the tumor and its metastases. Cancer 1980; 46:2623.
  120. Baez JC, Jagannathan JP, Krajewski K, et al. Pheochromocytoma and paraganglioma: imaging characteristics. Cancer Imaging 2012; 12:153.
  121. Moskovic DJ, Smolarz JR, Stanley D, et al. Malignant head and neck paragangliomas: is there an optimal treatment strategy? Head Neck Oncol 2010; 2:23.
  122. Elder EE, Elder G, Larsson C. Pheochromocytoma and functional paraganglioma syndrome: no longer the 10% tumor. J Surg Oncol 2005; 89:193.
  123. Parenti G, Zampetti B, Rapizzi E, et al. Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma. J Oncol 2012; 2012:872713.
  124. Gimenez-Roqueplo AP, Dahia PL, Robledo M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 2012; 44:328.
  125. Lee JH, Barich F, Karnell LH, et al. National Cancer Data Base report on malignant paragangliomas of the head and neck. Cancer 2002; 94:730.
  126. Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 2007; 14:569.
  127. Monabati A, Hodjati H, Kumar PV. Cytologic findings in carotid body tumors. Acta Cytol 2002; 46:1101.
  128. Chuah KL, Tan PH, Chong YY. Test and teach. Number ninety-three: Part 1. Carotid body paraganglioma. Pathology 1999; 31:215.
  129. Vanderveen KA, Thompson SM, Callstrom MR, et al. Biopsy of pheochromocytomas and paragangliomas: potential for disaster. Surgery 2009; 146:1158.
  130. Kubota K, Kato S, Mawatari H, et al. Risky endoscopic ultrasonography-guided fine-needle aspiration for asymptomatic retroperitoneal tumors. Dig Endosc 2010; 22:144.
  131. Johnson RG, Carty SE, Scarpa A. Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts. J Biol Chem 1981; 256:5773.
  132. Manger WM, Gifford RW.. Clinical and experimental pheochromocytoma, seconded., Blackwell Sciences, Cambridge 1996.
  133. Deng JH, Li HZ, Zhang YS, Liu GH. Functional paragangliomas of the urinary bladder: a report of 9 cases. Chin J Cancer 2010; 29:729.
  134. Siatelis A, Konstantinidis C, Volanis D, et al. Pheochromocytoma of the urinary bladder: report of 2 cases and review of literature. Minerva Urol Nefrol 2008; 60:137.
  135. Schwaber MK, Glasscock ME, Nissen AJ, et al. Diagnosis and management of catecholamine secreting glomus tumors. Laryngoscope 1984; 94:1008.
  136. Kirkby-Bott J, Brunaud L, Mathonet M, et al. Ectopic hormone-secreting pheochromocytoma: a francophone observational study. World J Surg 2012; 36:1382.
  137. Lenders JW, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014; 99:1915.
  138. Stein PP, Black HR. A simplified diagnostic approach to pheochromocytoma. A review of the literature and report of one institution's experience. Medicine (Baltimore) 1991; 70:46.
  139. Bravo EL. Pheochromocytoma: new concepts and future trends. Kidney Int 1991; 40:544.
  140. Lee HM, Jeong DS, Park PW, et al. Anterior mediastinal paraganglioma mimicking thymoma. Heart Surg Forum 2012; 15:E170.
  141. Bravo EL. Evolving concepts in the pathophysiology, diagnosis, and treatment of pheochromocytoma. Endocr Rev 1994; 15:356.
  142. Pomares FJ, Cañas R, Rodriguez JM, et al. Differences between sporadic and multiple endocrine neoplasia type 2A phaeochromocytoma. Clin Endocrinol (Oxf) 1998; 48:195.
  143. Intenzo CM, Jabbour S, Lin HC, et al. Scintigraphic imaging of body neuroendocrine tumors. Radiographics 2007; 27:1355.
  144. Milardovic R, Corssmit EP, Stokkel M. Value of 123I-MIBG Scintigraphy in Paraganglioma. Neuroendocrinology 2010; 91:94.
  145. Hoegerle S, Ghanem N, Altehoefer C, et al. 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 2003; 30:689.
  146. Fonte JS, Robles JF, Chen CC, et al. False-negative ¹²³I-MIBG SPECT is most commonly found in SDHB-related pheochromocytoma or paraganglioma with high frequency to develop metastatic disease. Endocr Relat Cancer 2012; 19:83.
  147. Bustillo A, Telischi F, Weed D, et al. Octreotide scintigraphy in the head and neck. Laryngoscope 2004; 114:434.
  148. Duet M, Sauvaget E, Pételle B, et al. Clinical impact of somatostatin receptor scintigraphy in the management of paragangliomas of the head and neck. J Nucl Med 2003; 44:1767.
  149. Telischi FF, Bustillo A, Whiteman ML, et al. Octreotide scintigraphy for the detection of paragangliomas. Otolaryngol Head Neck Surg 2000; 122:358.
  150. Timmers HJ, Chen CC, Carrasquillo JA, et al. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. J Natl Cancer Inst 2012; 104:700.
  151. King KS, Whatley MA, Alexopoulos DK, et al. The use of functional imaging in a patient with head and neck paragangliomas. J Clin Endocrinol Metab 2010; 95:481.
  152. Timmers HJ, Kozupa A, Chen CC, et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol 2007; 25:2262.
  153. Treglia G, Cocciolillo F, de Waure C, et al. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging 2012; 39:1144.
  154. Luster M, Karges W, Zeich K, et al. Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET/CT) for detecting pheochromocytoma. Eur J Nucl Med Mol Imaging 2010; 37:484.
  155. Kayani I, Bomanji JB, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 2008; 112:2447.
  156. Chen L, Li F, Zhuang H, et al. 99mTc-HYNIC-TOC scintigraphy is superior to 131I-MIBG imaging in the evaluation of extraadrenal pheochromocytoma. J Nucl Med 2009; 50:397.
  157. Fiebrich HB, Brouwers AH, Kerstens MN, et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009; 94:3922.
  158. Kroiss A, Putzer D, Frech A, et al. A retrospective comparison between 68Ga-DOTA-TOC PET/CT and 18F-DOPA PET/CT in patients with extra-adrenal paraganglioma. Eur J Nucl Med Mol Imaging 2013; 40:1800.
  159. Janssen I, Blanchet EM, Adams K, et al. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res 2015; 21:3888.
  160. Janssen I, Chen CC, Millo CM, et al. PET/CT comparing (68)Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2016; 43:1784.
  161. Tan TH, Hussein Z, Saad FF, Shuaib IL. Diagnostic Performance of (68)Ga-DOTATATE PET/CT, (18)F-FDG PET/CT and (131)I-MIBG Scintigraphy in Mapping Metastatic Pheochromocytoma and Paraganglioma. Nucl Med Mol Imaging 2015; 49:143.
  162. Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics 2015; 35:500.
  163. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm504524.htm (Accessed on June 07, 2016).
  164. Sajid MS, Hamilton G, Baker DM, Joint Vascular Research Group. A multicenter review of carotid body tumour management. Eur J Vasc Endovasc Surg 2007; 34:127.
  165. Boedeker CC, Ridder GJ, Schipper J. Paragangliomas of the head and neck: diagnosis and treatment. Fam Cancer 2005; 4:55.
  166. Pellitteri PK, Rinaldo A, Myssiorek D, et al. Paragangliomas of the head and neck. Oral Oncol 2004; 40:563.
  167. Schipper J, Boedeker CC, Maier W, Neumann HP. [Paragangliomas in the head-/neck region. I: Classification and diagnosis]. HNO 2004; 52:569.
  168. Miller RB, Boon MS, Atkins JP, Lowry LD. Vagal paraganglioma: the Jefferson experience. Otolaryngol Head Neck Surg 2000; 122:482.
  169. Phitayakorn R, Faquin W, Wei N, et al. Thyroid-associated paragangliomas. Thyroid 2011; 21:725.
  170. Stoeckli SJ, Schuknecht B, Alkadhi H, Fisch U. Evaluation of paragangliomas presenting as a cervical mass on color-coded Doppler sonography. Laryngoscope 2002; 112:143.
  171. Boedeker CC. Paragangliomas and paraganglioma syndromes. GMS Curr Top Otorhinolaryngol Head Neck Surg 2011;10:Doc03. Available online at http://www.egms.de/static/pdf/journals/cto/2012-10/cto000076.pdf (Accessed on September 25, 2012).
  172. Motta-Ramirez GA, Remer EM, Herts BR, et al. Comparison of CT findings in symptomatic and incidentally discovered pheochromocytomas. AJR Am J Roentgenol 2005; 185:684.
  173. Rao AB, Koeller KK, Adair CF. From the archives of the AFIP. Paragangliomas of the head and neck: radiologic-pathologic correlation. Armed Forces Institute of Pathology. Radiographics 1999; 19:1605.
  174. Swartz JD, Harnsberger HR, Mukherji SK. The temporal bone. Contemporary diagnostic dilemmas. Radiol Clin North Am 1998; 36:819.
  175. Cheng A, Niparko JK. Imaging quiz case 2. Glomus tympanicum tumor of the temporal bone. Arch Otolaryngol Head Neck Surg 1997; 123:549, 551.
  176. Bessell-Browne R, O'Malley ME. CT of pheochromocytoma and paraganglioma: risk of adverse events with i.v. administration of nonionic contrast material. AJR Am J Roentgenol 2007; 188:970.
  177. Mukherjee JJ, Peppercorn PD, Reznek RH, et al. Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels. Radiology 1997; 202:227.
  178. Olsen WL, Dillon WP, Kelly WM, et al. MR imaging of paragangliomas. AJR Am J Roentgenol 1987; 148:201.
  179. Ghayee HK, Havekes B, Corssmit EP, et al. Mediastinal paragangliomas: association with mutations in the succinate dehydrogenase genes and aggressive behavior. Endocr Relat Cancer 2009; 16:291.
  180. Ayadi-Kaddour A, Braham E, Ismail O, et al. Posterior mediastinal paragangliomas: a report of three patients with peculiar tumours. Respirology 2009; 14:459.
  181. Hato T, Kaseda K, Harada M, Horio H. Aorticopulmonary paraganglioma. Gen Thorac Cardiovasc Surg 2011; 59:812.
  182. Wald O, Shapira OM, Murar A, Izhar U. Paraganglioma of the mediastinum: challenges in diagnosis and surgical management. J Cardiothorac Surg 2010; 5:19.
  183. Spector JA, Willis DN, Ginsburg HB. Paraganglioma (pheochromocytoma) of the posterior mediastinum: a case report and review of the literature. J Pediatr Surg 2003; 38:1114.
  184. Ayala-Ramirez M, Feng L, Johnson MM, et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab 2011; 96:717.
  185. Lamy AL, Fradet GJ, Luoma A, Nelems B. Anterior and middle mediastinum paraganglioma: complete resection is the treatment of choice. Ann Thorac Surg 1994; 57:249.
  186. Olson JL, Salyer WR. Mediastinal paragangliomas (aortic body tumor): a report of four cases and a review of the literature. Cancer 1978; 41:2405.
  187. van Nederveen FH, Gaal J, Favier J, et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009; 10:764.
  188. Gill AJ, Benn DE, Chou A, et al. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol 2010; 41:805.
  189. Lodish MB, Adams KT, Huynh TT, et al. Succinate dehydrogenase gene mutations are strongly associated with paraganglioma of the organ of Zuckerkandl. Endocr Relat Cancer 2010; 17:581.
  190. Klein RD, Jin L, Rumilla K, et al. Germline SDHB mutations are common in patients with apparently sporadic sympathetic paragangliomas. Diagn Mol Pathol 2008; 17:94.
  191. King KS, Prodanov T, Kantorovich V, et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J Clin Oncol 2011; 29:4137.
Topic Outline