UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 31

of 'Pain assessment and management in the last weeks of life'

31
TI
Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine. The influence of renal failure.
AU
D'Honneur G, Gilton A, Sandouk P, Scherrmann JM, Duvaldestin P
SO
Anesthesiology. 1994;81(1):87.
 
BACKGROUND: In patients with renal failure, morphine may cause prolonged narcosis and respiratory depression. Accumulation of the pharmacologically active metabolite morphine-6-glucuronide (M-6G) may explain this effect of morphine in patients with renal failure. After a single oral dose, morphine and its conjugates were measured in the plasma and the cerebrospinal fluid (CSF) in patients with renal failure.
METHODS: Eight patients with normal renal function and six patients with renal failure requiring dialysis were studied after operation under spinal anesthesia. Plasma and CSF concentrations of morphine, morphine-3-glucuronide (M-3G), and M-6G were measured by high-pressure liquid chromatography every 4 h for 24 h after an oral dose of 30 mg morphine.
RESULTS: The area under morphine plasma concentration-time curve from 0 to 24 h increased from 38 +/- 4 ng.ml-1 x h in patients with normal renal function to 110 ng.ml-1 x h in those with renal failure (P<0.01). In patients with renal failure, plasma concentrations of M-3G and M-6G were higher at 4 h and remained at an increased level until the end of the study. The peak CSF concentration of morphine at 8 h was similar in those with renal failure or normal renal function, 1.8 +/- 0.4 and 2.0 +/- 0.6 ng.ml-1 respectively. M-3G and M-6G in CSF reached a maximum at 12 h in patients with normal renal function, whereas in those with renal failure the concentrations gradually increased so that the highest concentrations were observed at 24 h. At 24 h, CSF M-6G concentration was 15 times greater in patients with renal failure than in those with normal renal function.
CONCLUSIONS: We conclude that M-3G and M-6G readily cross the blood-brain barrier in patients with normal renal function or with renal failure. In patients with renal failure, the retention of plasma M-6G induces a progressive accumulation of this active metabolite in CSF; this accumulation may explain the increased susceptibility to morphine in patients with renal failure.
AD
Department of Anesthesia, University of Paris, Henri Mondor Hospital, France.
PMID