Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Overview of the renin-angiotensin system

Naomi DL Fisher, MD
Section Editor
George L Bakris, MD
Deputy Editor
John P Forman, MD, MSc


The renin-angiotensin system (RAS) plays a crucial role in the regulation of renal, cardiac, and vascular physiology, and its activation is central to many common pathologic conditions including hypertension, heart failure, and renal disease.

An overview of the normal function of the system, as well as ramifications of its dysfunction (overactivity) and potentials for therapeutic blockade, is provided here. Discussions of drugs that inhibit the RAS for the treatment of hypertension, kidney disease, and heart disease are provided in other topics.

The classical (historical) view of the RAS pathway begins with renin cleaving its substrate, angiotensinogen (AGT), to produce the inactive peptide, angiotensin I, which is then converted to angiotensin II by endothelial angiotensin-converting enzyme (ACE). ACE activation of angiotensin II occurs most extensively in the lung (figure 1). Angiotensin II mediates vasoconstriction as well as aldosterone release from the adrenal gland, resulting in sodium retention and increased blood pressure.

However, it is widely recognized that this classical view of the endocrine RAS pathway represents an incomplete description of the system. Instead of one simple circulating RAS, it is recognized that there are also several tissue (local) renin-angiotensin systems that function independently of each other and of the circulating RAS. In particular, angiotensin II generation at the tissue level by these local systems appears to have physiologic effects that are as important as circulating angiotensin II and, under some circumstances, more important than circulating angiotensin II.

Thus, the RAS includes local systems with autocrine (cell-to-same cell) and paracrine (cell-to-different cell) effects in addition to the classical circulating RAS with endocrine effects. Physiology of the RAS is proving far more complex than a simple circulating pathway controlling blood volume and blood pressure. In these local systems, activation of angiotensin II results in harmful effects and target-organ damage that extend beyond vascular and renal hemodynamics to direct tissue actions, including tissue remodeling, endothelial dysfunction, and fibrosis. A more detailed review appears below. (See 'Tissue renin-angiotensin systems' below.)

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Dec 05, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Weber KT. Aldosterone in congestive heart failure. N Engl J Med 2001; 345:1689.
  2. Dzau VJ, Colucci WS, Williams GH, et al. Sustained effectiveness of converting-enzyme inhibition in patients with severe congestive heart failure. N Engl J Med 1980; 302:1373.
  3. Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 1992; 327:669.
  4. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345:851.
  5. Rigatto C, Parfrey P, Foley R, et al. Congestive heart failure in renal transplant recipients: risk factors, outcomes, and relationship with ischemic heart disease. J Am Soc Nephrol 2002; 13:1084.
  6. Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000; 342:145.
  7. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345:861.
  8. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993; 329:1456.
  9. Skøtt O, Jensen BL. Cellular and intrarenal control of renin secretion. Clin Sci (Lond) 1993; 84:1.
  10. Toffelmire EB, Slater K, Corvol P, et al. Response of plasma prorenin and active renin to chronic and acute alterations of renin secretion in normal humans. Studies using a direct immunoradiometric assay. J Clin Invest 1989; 83:679.
  11. Naftilan AJ, Zuo WM, Inglefinger J, et al. Localization and differential regulation of angiotensinogen mRNA expression in the vessel wall. J Clin Invest 1991; 87:1300.
  12. Schunkert H, Ingelfinger JR, Hirsch AT, et al. Evidence for tissue-specific activation of renal angiotensinogen mRNA expression in chronic stable experimental heart failure. J Clin Invest 1992; 90:1523.
  13. Shricker K, Holmer S, Krämer BK, et al. The role of angiotensin II in the feedback control of renin gene expression. Pflugers Arch 1997; 434:166.
  14. Bock HA, Hermle M, Brunner FP, Thiel G. Pressure dependent modulation of renin release in isolated perfused glomeruli. Kidney Int 1992; 41:275.
  15. Freeman RH, Davis JO, Villarreal D. Role of renal prostaglandins in the control of renin release. Circ Res 1984; 54:1.
  16. Kopp U, DiBona GF. Interaction of renal beta 1-adrenoceptors and prostaglandins in reflex renin release. Am J Physiol 1983; 244:F418.
  17. Lorenz JN, Weihprecht H, Schnermann J, et al. Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol 1991; 260:F486.
  18. Kotchen TA, Luke RG, Ott CE, et al. Effect of chloride on renin and blood pressure responses to sodium chloride. Ann Intern Med 1983; 98:817.
  19. Ingelfinger JR, Pratt RE, Ellison K, Dzau VJ. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla. J Clin Invest 1986; 78:1311.
  20. Schalekamp MA, Derkx FH, Deinum J, Danser AJ. Newly developed renin and prorenin assays and the clinical evaluation of renin inhibitors. J Hypertens 2008; 26:928.
  21. Jan Danser AH. Renin and prorenin as biomarkers in hypertension. Curr Opin Nephrol Hypertens 2012; 21:508.
  22. Laragh JH, Sealey JE. Abnormal sodium metabolism and plasma renin activity (renal renin secretion) and the vasoconstriction volume hypothesis: implications for pathogenesis and treatment of hypertension and its vascular consequences (heart attack, stroke). Clin Chem 1991; 37:1820.
  23. Alderman MH, Madhavan S, Ooi WL, et al. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 1991; 324:1098.
  24. Fisher ND, Jan Danser AH, Nussberger J, et al. Renal and hormonal responses to direct renin inhibition with aliskiren in healthy humans. Circulation 2008; 117:3199.
  25. Fisher ND, Hollenberg NK. Renin inhibition: what are the therapeutic opportunities? J Am Soc Nephrol 2005; 16:592.
  26. Friedrich S, Schmieder RE. Review of direct renin inhibition by aliskiren. J Renin Angiotensin Aldosterone Syst 2013; 14:193.
  27. Persson F, Rossing P, Parving HH. Direct renin inhibition in chronic kidney disease. Br J Clin Pharmacol 2013; 76:580.
  28. Franken AA, Derkx FH, Man in't Veld AJ, et al. High plasma prorenin in diabetes mellitus and its correlation with some complications. J Clin Endocrinol Metab 1990; 71:1008.
  29. Luetscher JA, Kraemer FB, Wilson DM, et al. Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications. N Engl J Med 1985; 312:1412.
  30. Deinum J, Rønn B, Mathiesen E, et al. Increase in serum prorenin precedes onset of microalbuminuria in patients with insulin-dependent diabetes mellitus. Diabetologia 1999; 42:1006.
  31. Shaw KJ, Do YS, Kjos S, et al. Human decidua is a major source of renin. J Clin Invest 1989; 83:2085.
  32. Lumbers ER, Pringle KG. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am J Physiol Regul Integr Comp Physiol 2014; 306:R91.
  33. Nguyen G, Delarue F, Burcklé C, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 2002; 109:1417.
  34. Nguyen G, Burckle C, Sraer JD. The renin receptor: the facts, the promise and the hope. Curr Opin Nephrol Hypertens 2003; 12:51.
  35. Price DA, Porter LE, Gordon M, et al. The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol 1999; 10:2382.
  36. Nguyen G. Renin, (pro)renin and receptor: an update. Clin Sci (Lond) 2011; 120:169.
  37. Cruciat CM, Ohkawara B, Acebron SP, et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 2010; 327:459.
  38. Corvol P, Jeunemaitre X. Molecular genetics of human hypertension: role of angiotensinogen. Endocr Rev 1997; 18:662.
  39. Schunkert H, Danser AH, Hense HW, et al. Effects of estrogen replacement therapy on the renin-angiotensin system in postmenopausal women. Circulation 1997; 95:39.
  40. Deschepper CF. Angiotensinogen: hormonal regulation and relative importance in the generation of angiotensin II. Kidney Int 1994; 46:1561.
  41. Ye M, Wysocki J, William J, et al. Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 2006; 17:3067.
  42. Rogerson FM, Chai SY, Schlawe I, et al. Presence of angiotensin converting enzyme in the adventitia of large blood vessels. J Hypertens 1992; 10:615.
  43. Dzau VJ, Bernstein K, Celermajer D, et al. Pathophysiologic and therapeutic importance of tissue ACE: a consensus report. Cardiovasc Drugs Ther 2002; 16:149.
  44. Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 1977; 196:441.
  45. Izzo JL Jr, Weir MR. Angiotensin-converting enzyme inhibitors. J Clin Hypertens (Greenwich) 2011; 13:667.
  46. Weir MR, Henrich WL. Theoretical basis and clinical evidence for differential effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor subtype 1 blockers. Curr Opin Nephrol Hypertens 2000; 9:403.
  47. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87:E1.
  48. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417:822.
  49. Boehm M, Nabel EG. Angiotensin-converting enzyme 2--a new cardiac regulator. N Engl J Med 2002; 347:1795.
  50. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002; 277:14838.
  51. Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A 2003; 100:8258.
  52. Ferrario CM, Varagic J. The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Renal Physiol 2010; 298:F1297.
  53. Ichikawi I, Harris RC. Angiotensin actions in the kidney: renewed insight into the old hormone. Kidney Int 1991; 40:583.
  54. Cogan MG. Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension 1990; 15:451.
  55. Quan A, Baum M. Regulation of proximal tubule transport by angiotensin II. Semin Nephrol 1997; 17:423.
  56. Myers BD, Deen WM, Brenner BM. Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res 1975; 37:101.
  57. Yuan BH, Robinette JB, Conger JD. Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am J Physiol 1990; 258:F741.
  58. Heyeraas KJ, Aukland K. Interlobular arterial resistance: influence of renal arterial pressure and angiotensin II. Kidney Int 1987; 31:1291.
  59. Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 2007; 21:20.
  60. Ruiz-Ortega M, Lorenzo O, Rupérez M, et al. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res 2000; 86:1266.
  61. Pueyo ME, Gonzalez W, Nicoletti A, et al. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20:645.
  62. Zahradka P, Werner JP, Buhay S, et al. NF-kappaB activation is essential for angiotensin II-dependent proliferation and migration of vascular smooth muscle cells. J Mol Cell Cardiol 2002; 34:1609.
  63. Kranzhöfer R, Browatzki M, Schmidt J, Kübler W. Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem Biophys Res Commun 1999; 257:826.
  64. Goodfriend TL, Elliott ME, Catt KJ. Angiotensin receptors and their antagonists. N Engl J Med 1996; 334:1649.
  65. Murphy TJ, Alexander RW, Griendling KK, et al. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 1991; 351:233.
  66. Romero CA, Orias M, Weir MR. Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 2015; 11:242.
  67. Sumners C, de Kloet AD, Krause EG, et al. Angiotensin type 2 receptors: blood pressure regulation and end organ damage. Curr Opin Pharmacol 2015; 21:115.
  68. Carey RM. The intrarenal renin-angiotensin and dopaminergic systems: control of renal sodium excretion and blood pressure. Hypertension 2013; 61:673.
  69. Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125:21.
  70. Kakiki M, Morohashi K, Nomura M, et al. Expression of aldosterone synthase cytochrome P450 (P450aldo) mRNA in rat adrenal glomerulosa cells by angiotensin II type 1 receptor. Endocr Res 1997; 23:277.
  71. Kifor I, Moore TJ, Fallo F, et al. Potassium-stimulated angiotensin release from superfused adrenal capsules and enzymatically dispersed cells of the zona glomerulosa. Endocrinology 1991; 129:823.
  72. Silva P, Brown RS, Epstein FH. Adaptation to potassium. Kidney Int 1977; 11:466.
  73. Takeda Y, Miyamori I, Yoneda T, et al. Production of aldosterone in isolated rat blood vessels. Hypertension 1995; 25:170.
  74. Takeda Y, Miyamori I, Yoneda T, et al. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J Clin Endocrinol Metab 1996; 81:2797.
  75. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83:1849.
  76. Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992; 120:893.
  77. Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 1994; 93:2578.
  78. Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension 2005; 46:1227.
  79. Chun TY, Bloem LJ, Pratt JH. Aldosterone inhibits inducible nitric oxide synthase in neonatal rat cardiomyocytes. Endocrinology 2003; 144:1712.
  80. O'Neil RG, Hayhurst RA. Sodium-dependent modulation of the renal Na-K-ATPase: influence of mineralocorticoids on the cortical collecting duct. J Membr Biol 1985; 85:169.
  81. Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension 1992; 19:221.
  82. Guo C, Ricchiuti V, Lian BQ, et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 2008; 117:2253.
  83. Armani A, Cinti F, Marzolla V, et al. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB J 2014; 28:3745.
  84. Underwood PC, Adler GK. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep 2013; 15:59.
  85. Garg R, Adler GK. Aldosterone and the Mineralocorticoid Receptor: Risk Factors for Cardiometabolic Disorders. Curr Hypertens Rep 2015; 17:52.
  86. Buglioni A, Cannone V, Cataliotti A, et al. Circulating aldosterone and natriuretic peptides in the general community: relationship to cardiorenal and metabolic disease. Hypertension 2015; 65:45.
  87. Hanslik G, Wallaschofski H, Dietz A, et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn's Registry. Eur J Endocrinol 2015; 173:665.
  88. Wagner C, Jensen BL, Kramer BK, Kurtz A. Control of the renal renin system by local factors. Kidney Int 1998; 54 (suppl 67):S78.
  89. Dzau VJ. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med 1993; 153:937.
  90. Wilkes BM, Mento PF, Pearl AR, et al. Plasma angiotensins in anephric humans: evidence for an extrarenal angiotensin system. J Cardiovasc Pharmacol 1991; 17:419.
  91. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86:747.
  92. Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003; 24:261.
  93. Yang T, Xu C. Physiology and Pathophysiology of the Intrarenal Renin-Angiotensin System: An Update. J Am Soc Nephrol 2017; 28:1040.
  94. Ingelfinger JR, Zuo WM, Fon EA, et al. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest 1990; 85:417.
  95. Yanagawa N. Potential role of local luminal angiotensin II in proximal tubule sodium transport. Kidney Int 1991; 39 (suppl 32):S.
  96. Seikaly MG, Arant BS Jr, Seney FD Jr. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest 1990; 86:1352.
  97. Navar LG, Lewis L, Hymel A, et al. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol 1994; 5:1153.
  98. Siragy HM, Howell NL, Ragsdale NV, Carey RM. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition. Hypertension 1995; 25:1021.
  99. Wenting GJ, de Bruyn JH, Man in't Veld AJ, et al. Hemodynamic effects of captopril in essential hypertension, renovascular hypertension and cardiac failure: correlations with short- and long-term effects on plasma renin. Am J Cardiol 1982; 49:1453.
  100. Giani JF, Shah KH, Khan Z, et al. The intrarenal generation of angiotensin II is required for experimental hypertension. Curr Opin Pharmacol 2015; 21:73.
  101. Carey RM. The intrarenal renin-angiotensin system in hypertension. Adv Chronic Kidney Dis 2015; 22:204.
  102. Kessler SP, deS Senanayake P, Scheidemantel TS, et al. Maintenance of normal blood pressure and renal functions are independent effects of angiotensin-converting enzyme. J Biol Chem 2003; 278:21105.
  103. Aroor AR, Demarco VG, Jia G, et al. The role of tissue Renin-Angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol (Lausanne) 2013; 4:161.
  104. McKinley MJ, Albiston AL, Allen AM, et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 2003; 35:901.
  105. Kalra J, Prakash A, Kumar P, Majeed AB. Cerebroprotective effects of RAS inhibitors: Beyond their cardio-renal actions. J Renin Angiotensin Aldosterone Syst 2015; 16:459.
  106. von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006; 326:599.
  107. De Mello WC, Frohlich ED. On the local cardiac renin angiotensin system. Basic and clinical implications. Peptides 2011; 32:1774.
  108. Redgrave J, Rabinowe S, Hollenberg NK, Williams GH. Correction of abnormal renal blood flow response to angiotensin II by converting enzyme inhibition in essential hypertensives. J Clin Invest 1985; 75:1285.
  109. Price DA, Fisher ND, Osei SY, et al. Renal perfusion and function in healthy African Americans. Kidney Int 2001; 59:1037.
  110. Fisher ND, Price DA, Litchfield WR, et al. Renal response to captopril reflects state of local renin system in healthy humans. Kidney Int 1999; 56:635.
  111. Stahl RA, Paravicini M, Schollmeyer P. Angiotensin II stimulation of prostaglandin E2 and 6-keto-F1 alpha formation by isolated human glomeruli. Kidney Int 1984; 26:30.
  112. Oliver JA, Pinto J, Sciacca RR, Cannon PJ. Increased renal secretion of norepinephrine and prostaglandin E2 during sodium depletion in the dog. J Clin Invest 1980; 66:748.
  113. Data JL, Gerber JG, Crump WJ, et al. The prostaglandin system. A role in canine baroreceptor control of renin release. Circ Res 1978; 42:454.
  114. Kumar R, Thomas CM, Yong QC, et al. The intracrine renin-angiotensin system. Clin Sci (Lond) 2012; 123:273.