Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Overview of perioperative nutritional support

Kathleen M Fairfield, MD, DrPH
Reza Askari, MD, FACS
Section Editors
Timothy O Lipman, MD
Hilary Sanfey, MD
Deputy Editor
Kathryn A Collins, MD, PhD, FACS


Malnutrition in hospitalized patients is well documented, with rates up to 50 percent in certain populations [1]. Nutritional support may be indicated for malnourished individuals requiring surgical intervention, or for healthy individuals undergoing major surgery with an anticipated lengthy recovery time to return of normal gastrointestinal function; however, it can be unclear when it is appropriate to intervene. The notion that malnutrition can affect outcomes in surgical patients was first reported in 1936 in a study showing that malnourished patients undergoing ulcer surgery had a 33 percent mortality rate compared with 3.5 percent in well-nourished individuals [2]. A prospective study of 500 patients, including 200 surgical patients, admitted to a teaching hospital in England found that 40 percent of patients were undernourished on presentation, and patients lost an average of 5.4 percent of their body weight during their hospital stay [3].

The nutritional assessment of surgical patients, options for, and potential benefits of nutritional support are reviewed here. An overview of parenteral and enteral nutrition and issues related to nutritional support in critically ill patients, and other specific populations (eg, cancer, burns, lung disease) are discussed in separate topic reviews.


Reduced food intake results in loss of fat, muscle, skin, and ultimately bone and viscera, with subsequent weight loss, and expansion of the extracellular fluid compartment [4]. Nutritional requirements fall as an individual's body mass decreases, probably reflecting more efficient utilization of ingested food and a reduction in work capacity at the cellular level. However, the combination of decreased tissue mass and reduced work capacity impedes normal homeostatic responses to stressors such as surgery or critical illness [5].

The stress of surgery or trauma creates a hypermetabolic state, increasing protein and energy requirements. Macronutrients (fat, protein, and glycogen) from the labile reserves of fat tissue and skeletal muscle are redistributed to more metabolically active tissues such as the liver and visceral organs. This response can lead to the onset of protein calorie malnutrition (defined as a negative balance of 100 g of nitrogen and 10,000 kcal) within a few days [6]. The rate of development of postoperative malnutrition in a given individual depends upon their preexisting nutritional status, nature and complexity of the surgical procedure, and the degree of hypermetabolism.

Malnutrition causes a number of negative consequences, including [4,5,7,8]:

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Dec 11, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Bruun LI, Bosaeus I, Bergstad I, Nygaard K. Prevalence of malnutrition in surgical patients: evaluation of nutritional support and documentation. Clin Nutr 1999; 18:141.
  2. Studley HO. Percentage of weight loss: a basic indicator of surgical risk in patients with chronic peptic ulcer. 1936. Nutr Hosp 2001; 16:141.
  3. McWhirter JP, Pennington CR. Incidence and recognition of malnutrition in hospital. BMJ 1994; 308:945.
  4. Elwyn DH, Bryan-Brown CW, Shoemaker WC. Nutritional aspects of body water dislocations in postoperative and depleted patients. Ann Surg 1975; 182:76.
  5. Kinney JM, Weissman C. Forms of malnutrition in stressed and unstressed patients. Clin Chest Med 1986; 7:19.
  6. Babineau TJ, Borlase BC, Blackburn GL. Applied Total Parental Nutrition in the Critically Ill. In: Intensive Care Medicine, Rippe JM, Irwin RS, Alpert JS, Fink MP (Eds), Little, Brown and Co, Boston 1991. p.1675.
  7. Santos JI. Nutrition, infection, and immunocompetence. Infect Dis Clin North Am 1994; 8:243.
  8. Mainous MR, Deitch EA. Nutrition and infection. Surg Clin North Am 1994; 74:659.
  9. Law DK, Dudrick SJ, Abdou NI. Immunocompetence of patients with protein-calorie malnutrition. The effects of nutritional repletion. Ann Intern Med 1973; 79:545.
  10. Haydock DA, Hill GL. Impaired wound healing in surgical patients with varying degrees of malnutrition. JPEN J Parenter Enteral Nutr 1986; 10:550.
  11. Albina JE. Nutrition and wound healing. JPEN J Parenter Enteral Nutr 1994; 18:367.
  12. Rady MY, Ryan T, Starr NJ. Clinical characteristics of preoperative hypoalbuminemia predict outcome of cardiovascular surgery. JPEN J Parenter Enteral Nutr 1997; 21:81.
  13. White JV, Guenter P, Jensen G, et al. Consensus statement: Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition: characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr 2012; 36:275.
  14. Mueller C, Compher C, Druyan MD. American Society for Parenteral and Enteral Nutrition ASPEN clinical guidelines: nutrition screening, assessment, and intervention in adults. JPEN 2011; 35:16.
  15. Kuppinger D, Hartl WH, Bertok M, et al. Nutritional screening for risk prediction in patients scheduled for abdominal operations. Br J Surg 2012; 99:728.
  16. Detsky AS, McLaughlin JR, Baker JP, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr 1987; 11:8.
  17. Kondrup J, Rasmussen HH, Hamberg O, et al. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr 2003; 22:321.
  18. Schiesser M, Müller S, Kirchhoff P, et al. Assessment of a novel screening score for nutritional risk in predicting complications in gastro-intestinal surgery. Clin Nutr 2008; 27:565.
  19. Reinhardt GF, Myscofski JW, Wilkens DB, et al. Incidence and mortality of hypoalbuminemic patients in hospitalized veterans. JPEN J Parenter Enteral Nutr 1980; 4:357.
  20. McClave SA, Snider HL, Spain DA. Preoperative issues in clinical nutrition. Chest 1999; 115:64S.
  21. Seres DS. Surrogate nutrition markers, malnutrition, and adequacy of nutrition support. Nutr Clin Pract 2005; 20:308.
  22. van Stijn MF, Korkic-Halilovic I, Bakker MS, et al. Preoperative nutrition status and postoperative outcome in elderly general surgery patients: a systematic review. JPEN J Parenter Enteral Nutr 2013; 37:37.
  23. Klein S, Kinney J, Jeejeebhoy K, et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. Summary of a conference sponsored by the National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. Am J Clin Nutr 1997; 66:683.
  24. Braga M, Ljungqvist O, Soeters P, et al. ESPEN Guidelines on Parenteral Nutrition: surgery. Clin Nutr 2009; 28:378.
  25. Martindale RG, McClave SA, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care Med 2009; 37:1757.
  26. Souba WW. Nutritional support. N Engl J Med 1997; 336:41.
  27. Moore FA, Feliciano DV, Andrassy RJ, et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg 1992; 216:172.
  28. Bower RH, Talamini MA, Sax HC, et al. Postoperative enteral vs parenteral nutrition. A randomized controlled trial. Arch Surg 1986; 121:1040.
  29. Kudsk KA, Croce MA, Fabian TC, et al. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 1992; 215:503.
  30. Shrikhande SV, Shetty GS, Singh K, Ingle S. Is early feeding after major gastrointestinal surgery a fashion or an advance? Evidence-based review of literature. J Cancer Res Ther 2009; 5:232.
  31. Lambert E, Carey S. Practice Guideline Recommendations on Perioperative Fasting: A Systematic Review. JPEN J Parenter Enteral Nutr 2016; 40:1158.
  32. Lewis SJ, Andersen HK, Thomas S. Early enteral nutrition within 24 h of intestinal surgery versus later commencement of feeding: a systematic review and meta-analysis. J Gastrointest Surg 2009; 13:569.
  33. Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev 2006; :CD004080.
  34. Sandström R, Drott C, Hyltander A, et al. The effect of postoperative intravenous feeding (TPN) on outcome following major surgery evaluated in a randomized study. Ann Surg 1993; 217:185.
  35. Jie B, Jiang ZM, Nolan MT, et al. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition 2012; 28:1022.
  36. Burden S, Todd C, Hill J, Lal S. Pre-operative nutrition support in patients undergoing gastrointestinal surgery. Cochrane Database Syst Rev 2012; 11:CD008879.
  37. Heyland DK, Montalvo M, MacDonald S, et al. Total parenteral nutrition in the surgical patient: a meta-analysis. Can J Surg 2001; 44:102.
  38. Koretz RL, Lipman TO, Klein S, American Gastroenterological Association. AGA technical review on parenteral nutrition. Gastroenterology 2001; 121:970.
  39. Klein S, Kinney J, Jeejeebhoy K, et al. Nutrition support in clinical practice: review of published data and recommendations for future research directions. Clin Nutr 1997; 16:193.
  40. Müller JM, Brenner U, Dienst C, Pichlmaier H. Preoperative parenteral feeding in patients with gastrointestinal carcinoma. Lancet 1982; 1:68.
  41. Müller JM, Keller HW, Brenner U, et al. Indications and effects of preoperative parenteral nutrition. World J Surg 1986; 10:53.
  42. Bozzetti F, Gavazzi C, Miceli R, et al. Perioperative total parenteral nutrition in malnourished, gastrointestinal cancer patients: a randomized, clinical trial. JPEN J Parenter Enteral Nutr 2000; 24:7.
  43. Fan ST, Lo CM, Lai EC, et al. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med 1994; 331:1547.
  44. Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. Perioperative total parenteral nutrition in surgical patients. N Engl J Med 1991; 325:525.
  45. Aarts MA, Okrainec A, Glicksman A, et al. Adoption of enhanced recovery after surgery (ERAS) strategies for colorectal surgery at academic teaching hospitals and impact on total length of hospital stay. Surg Endosc 2012; 26:442.
  46. Rawlinson A, Kang P, Evans J, Khanna A. A systematic review of enhanced recovery protocols in colorectal surgery. Ann R Coll Surg Engl 2011; 93:583.
  47. Varadhan KK, Neal KR, Dejong CH, et al. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr 2010; 29:434.
  48. Koretz RL, Avenell A, Lipman TO, et al. Does enteral nutrition affect clinical outcome? A systematic review of the randomized trials. Am J Gastroenterol 2007; 102:412.
  49. Osland E, Yunus RM, Khan S, Memon MA. Early versus traditional postoperative feeding in patients undergoing resectional gastrointestinal surgery: a meta-analysis. JPEN J Parenter Enteral Nutr 2011; 35:473.
  50. Zhuang CL, Ye XZ, Zhang CJ, et al. Early versus traditional postoperative oral feeding in patients undergoing elective colorectal surgery: a meta-analysis of randomized clinical trials. Dig Surg 2013; 30:225.
  51. Gerritsen A, Besselink MG, Gouma DJ, et al. Systematic review of five feeding routes after pancreatoduodenectomy. Br J Surg 2013; 100:589.
  52. Torres Júnior LG, de Vasconcellos Santos FA, Correia MI. Randomized clinical trial: nasoenteric tube or jejunostomy as a route for nutrition after major upper gastrointestinal operations. World J Surg 2014; 38:2241.
  53. Perinel J, Mariette C, Dousset B, et al. Early Enteral Versus Total Parenteral Nutrition in Patients Undergoing Pancreaticoduodenectomy: A Randomized Multicenter Controlled Trial (Nutri-DPC). Ann Surg 2016; 264:731.
  54. Zheng YM, Li F, Zhang MM, Wu XT. Glutamine dipeptide for parenteral nutrition in abdominal surgery: a meta-analysis of randomized controlled trials. World J Gastroenterol 2006; 12:7537.
  55. Drover JW, Dhaliwal R, Weitzel L, et al. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg 2011; 212:385.
  56. Marimuthu K, Varadhan KK, Ljungqvist O, Lobo DN. A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann Surg 2012; 255:1060.
  57. Probst P, Ohmann S, Klaiber U, et al. Meta-analysis of immunonutrition in major abdominal surgery. Br J Surg 2017; 104:1594.
  58. Beale RJ, Bryg DJ, Bihari DJ. Immunonutrition in the critically ill: a systematic review of clinical outcome. Crit Care Med 1999; 27:2799.
  59. Heyland DK, Novak F, Drover JW, et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 2001; 286:944.
  60. Hegazi RA, Hustead DS, Evans DC. Preoperative standard oral nutrition supplements vs immunonutrition: results of a systematic review and meta-analysis. J Am Coll Surg 2014; 219:1078.
  61. Senkal M, Mumme A, Eickhoff U, et al. Early postoperative enteral immunonutrition: clinical outcome and cost-comparison analysis in surgical patients. Crit Care Med 1997; 25:1489.
  62. Senkal M, Zumtobel V, Bauer KH, et al. Outcome and cost-effectiveness of perioperative enteral immunonutrition in patients undergoing elective upper gastrointestinal tract surgery: a prospective randomized study. Arch Surg 1999; 134:1309.
  63. Gianotti L, Braga M, Nespoli L, et al. A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology 2002; 122:1763.
  64. Braga M, Gianotti L, Nespoli L, et al. Nutritional approach in malnourished surgical patients: a prospective randomized study. Arch Surg 2002; 137:174.
  65. Okabayashi T, Nishimori I, Sugimoto T, et al. The benefit of the supplementation of perioperative branched-chain amino acids in patients with surgical management for hepatocellular carcinoma: a preliminary study. Dig Dis Sci 2008; 53:204.
  66. Morlion BJ, Stehle P, Wachtler P, et al. Total parenteral nutrition with glutamine dipeptide after major abdominal surgery: a randomized, double-blind, controlled study. Ann Surg 1998; 227:302.
  67. Powell-Tuck J, Jamieson CP, Bettany GE, et al. A double blind, randomised, controlled trial of glutamine supplementation in parenteral nutrition. Gut 1999; 45:82.
  68. Fujitani K, Tsujinaka T, Fujita J, et al. Prospective randomized trial of preoperative enteral immunonutrition followed by elective total gastrectomy for gastric cancer. Br J Surg 2012; 99:621.
  69. Ziegler TR, May AK, Hebbar G, et al. Efficacy and Safety of Glutamine-supplemented Parenteral Nutrition in Surgical ICU Patients: An American Multicenter Randomized Controlled Trial. Ann Surg 2016; 263:646.
  70. Marik PE, Zaloga GP. Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med 2008; 34:1980.
  71. Mazaki T, Ishii Y, Murai I. Immunoenhancing enteral and parenteral nutrition for gastrointestinal surgery: a multiple-treatments meta-analysis. Ann Surg 2015; 261:662.