Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Overview of non-falciparum malaria in nonpregnant adults and children

J Kevin Baird, PhD
Ric Price, MD
Section Editor
Johanna Daily, MD, MSc
Deputy Editor
Elinor L Baron, MD, DTMH


Non-falciparum malaria refers to malaria infection due to Plasmodium species other than P. falciparum; these include P. vivax, P. ovale, P. malariae, and P. knowlesi (table 1) [1].

Worldwide, the greatest mortality due to malaria is associated with P. falciparum infection. Infections caused by P. knowlesi and P. vivax are also associated with significant risk of morbidity and mortality [2-4]; patients with uncomplicated malaria due to these species are vulnerable to deterioration even after initiation of treatment, and P. vivax infection may be complicated by recurrent infection and associated anemia [5]. Rarely, severe illness and death occur in the setting of infection with P. malariae or P. ovale [6-8].

The epidemiology, clinical manifestations, diagnosis, and treatment of non-falciparum malaria in nonpregnant adults and children will be reviewed here. Issues related to non-falciparum malaria in pregnant women are discussed separately, as are issues related to P. falciparum malaria. (See "Prevention and treatment of malaria in pregnant women", section on 'Non-falciparum malaria' and "Treatment of uncomplicated falciparum malaria in nonpregnant adults and children" and "Treatment of severe malaria".)


The epidemiology of non-falciparum malaria is variable depending on the species, as described in the following sections. Issues related to chloroquine are most significant in the setting of P. vivax infection, as discussed below.

Non-falciparum malaria species

Plasmodium vivax — Of the non-falciparum species, P. vivax is the most important; approximately one-third of the world's population is at risk for infection caused by this species [1]. P. vivax accounts for approximately 9 percent of malaria cases worldwide and is the dominant malaria species outside Africa [9,10]. In most areas where P. vivax is prevalent, malaria transmission rates are low (the island of New Guinea is an exception); therefore, affected populations achieve little immunity, and people of all ages are at risk.

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Jun 28, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization, 2015. http://apps.who.int/iris/bitstream/10665/162441/1/9789241549127_eng.pdf?ua=1&ua=1 (Accessed on October 22, 2015).
  2. Millar SB, Cox-Singh J. Human infections with Plasmodium knowlesi--zoonotic malaria. Clin Microbiol Infect 2015; 21:640.
  3. Seilmaier M, Hartmann W, Beissner M, et al. Severe Plasmodium knowlesi infection with multi-organ failure imported to Germany from Thailand/Myanmar. Malar J 2014; 13:422.
  4. Baird JK. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev 2013; 26:36.
  5. Douglas NM, Lampah DA, Kenangalem E, et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med 2013; 10:e1001575; discussion e1001575.
  6. Tomar LR, Giri S, Bauddh NK, Jhamb R. Complicated malaria: a rare presentation of Plasmodium ovale. Trop Doct 2015; 45:140.
  7. Hwang J, Cullen KA, Kachur SP, et al. Severe morbidity and mortality risk from malaria in the United States, 1985-2011. Open Forum Infect Dis 2014; 1:ofu034.
  8. Mace KE, Arguin PM. Malaria Surveillance - United States, 2014. MMWR Surveill Summ 2017; 66:1.
  9. Hay SI, Guerra CA, Tatem AJ, et al. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 2004; 4:327.
  10. Gething PW, Elyazar IR, Moyes CL, et al. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 2012; 6:e1814.
  11. Broderick C, Nadjm B, Smith V, et al. Clinical, geographical, and temporal risk factors associated with presentation and outcome of vivax malaria imported into the United Kingdom over 27 years: observational study. BMJ 2015; 350:h1703.
  12. Robert LL, Santos-Ciminera PD, Andre RG, et al. Plasmodium-infected Anopheles mosquitoes collected in Virginia and Maryland following local transmission of Plasmodium vivax malaria in Loudoun County, Virginia. J Am Mosq Control Assoc 2005; 21:187.
  13. Andriopoulos P, Economopoulou A, Spanakos G, Assimakopoulos G. A local outbreak of autochthonous Plasmodium vivax malaria in Laconia, Greece--a re-emerging infection in the southern borders of Europe? Int J Infect Dis 2013; 17:e125.
  14. White NJ, Imwong M. Relapse. Adv Parasitol 2012; 80:113.
  15. Betuela I, Rosanas-Urgell A, Kiniboro B, et al. Relapses contribute significantly to the risk of Plasmodium vivax infection and disease in Papua New Guinean children 1-5 years of age. J Infect Dis 2012; 206:1771.
  16. Douglas NM, Nosten F, Ashley EA, et al. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin Infect Dis 2011; 52:612.
  17. Sutanto I, Tjahjono B, Basri H, et al. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrob Agents Chemother 2013; 57:1128.
  18. White MT, Karl S, Battle KE, et al. Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. Elife 2014; 3.
  19. Ryan JR, Stoute JA, Amon J, et al. Evidence for transmission of Plasmodium vivax among a duffy antigen negative population in Western Kenya. Am J Trop Med Hyg 2006; 75:575.
  20. Cavasini CE, Mattos LC, Couto AA, et al. Plasmodium vivax infection among Duffy antigen-negative individuals from the Brazilian Amazon region: an exception? Trans R Soc Trop Med Hyg 2007; 101:1042.
  21. Ménard D, Barnadas C, Bouchier C, et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci U S A 2010; 107:5967.
  22. Mendes C, Dias F, Figueiredo J, et al. Duffy negative antigen is no longer a barrier to Plasmodium vivax--molecular evidences from the African West Coast (Angola and Equatorial Guinea). PLoS Negl Trop Dis 2011; 5:e1192.
  23. Wurtz N, Mint Lekweiry K, Bogreau H, et al. Vivax malaria in Mauritania includes infection of a Duffy-negative individual. Malar J 2011; 10:336.
  24. Culleton R, Ndounga M, Zeyrek FY, et al. Evidence for the transmission of Plasmodium vivax in the Republic of the Congo, West Central Africa. J Infect Dis 2009; 200:1465.
  25. Bernabeu M, Gomez-Perez GP, Sissoko S, et al. Plasmodium vivax malaria in Mali: a study from three different regions. Malar J 2012; 11:405.
  26. Kochar DK, Saxena V, Singh N, et al. Plasmodium vivax malaria. Emerg Infect Dis 2005; 11:132.
  27. Tjitra E, Anstey NM, Sugiarto P, et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 2008; 5:e128.
  28. Barcus MJ, Basri H, Picarima H, et al. Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua. Am J Trop Med Hyg 2007; 77:984.
  29. Nurleila S, Syafruddin D, Elyazar IR, Baird JK. Serious and fatal illness associated with falciparum and vivax malaria among patients admitted to hospital at West Sumba in eastern Indonesia. Am J Trop Med Hyg 2012; 87:41.
  30. Kochar DK, Das A, Kochar A, et al. A prospective study on adult patients of severe malaria caused by Plasmodium falciparum, Plasmodium vivax and mixed infection from Bikaner, northwest India. J Vector Borne Dis 2014; 51:200.
  31. Alexandre MA, Ferreira CO, Siqueira AM, et al. Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis 2010; 16:1611.
  32. Poespoprodjo JR, Fobia W, Kenangalem E, et al. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis 2009; 48:1704.
  33. McGready R, Lee SJ, Wiladphaingern J, et al. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis 2012; 12:388.
  34. Maguire JD, Fenton ME, Susanti AI, Walker JB. Plasmodium vivax-associated acute respiratory distress syndrome after extended travel in Afghanistan. Travel Med Infect Dis 2007; 5:301.
  35. Kotwal RS, Wenzel RB, Sterling RA, et al. An outbreak of malaria in US Army Rangers returning from Afghanistan. JAMA 2005; 293:212.
  36. Kawamoto F, Liu Q, Ferreira MU, Tantular IS. How prevalent are Plasmodium ovale and P. malariae in East Asia? Parasitol Today 1999; 15:422.
  37. Baird JK, Purnomo, Masbar S. Plasmodium ovale in Indonesia. Southeast Asian J Trop Med Public Health 1990; 21:541.
  38. Sutherland CJ, Tanomsing N, Nolder D, et al. Two nonrecombining sympatric forms of the human malaria parasite Plasmodium ovale occur globally. J Infect Dis 2010; 201:1544.
  39. Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and Plasmodium ovale--the "bashful" malaria parasites. Trends Parasitol 2007; 23:278.
  40. Morovic M, Poljak I, Miletic B, et al. Late symptomatic Plasmodium malariae relapse in the territory of the former Yugoslavia. J Travel Med 2003; 10:301.
  42. Singh B, Kim Sung L, Matusop A, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 2004; 363:1017.
  43. Kantele A, Jokiranta TS. Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis 2011; 52:1356.
  44. Moyes CL, Henry AJ, Golding N, et al. Defining the geographical range of the Plasmodium knowlesi reservoir. PLoS Negl Trop Dis 2014; 8:e2780.
  45. Singh B, Daneshvar C. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev 2013; 26:165.
  46. William T, Jelip J, Menon J, et al. Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi. Malar J 2014; 13:390.
  47. Sallum MA, Peyton EL, Wilkerson RC. Six new species of the Anopheles leucosphyrus group, reinterpretation of An. elegans and vector implications. Med Vet Entomol 2005; 19:158.
  48. Centers for Disease Control and Prevention (CDC). Simian malaria in a U.S. traveler--New York, 2008. MMWR Morb Mortal Wkly Rep 2009; 58:229.
  49. Baird JK. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 2004; 48:4075.
  50. Baird JK, Leksana B, Masbar S, et al. Diagnosis of resistance to chloroquine by Plasmodium vivax: timing of recurrence and whole blood chloroquine levels. Am J Trop Med Hyg 1997; 56:621.
  51. Rieckmann KH, Davis DR, Hutton DC. Plasmodium vivax resistance to chloroquine? Lancet 1989; 2:1183.
  52. Price RN, von Seidlein L, Valecha N, et al. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis 2014; 14:982.
  53. Sumawinata IW, Bernadeta, Leksana B, et al. Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua. Am J Trop Med Hyg 2003; 68:416.
  54. Ratcliff A, Siswantoro H, Kenangalem E, et al. Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia. Trans R Soc Trop Med Hyg 2007; 101:351.
  55. Maguire JD, Sumawinata IW, Masbar S, et al. Chloroquine-resistant Plasmodium malariae in south Sumatra, Indonesia. Lancet 2002; 360:58.
  56. Betson M, Sousa-Figueiredo JC, Atuhaire A, et al. Detection of persistent Plasmodium spp. infections in Ugandan children after artemether-lumefantrine treatment. Parasitology 2014; 141:1880.
  57. Daneshvar C, Davis TM, Cox-Singh J, et al. Clinical and parasitological response to oral chloroquine and primaquine in uncomplicated human Plasmodium knowlesi infections. Malar J 2010; 9:238.
  58. Grigg MJ, William T, Dhanaraj P, et al. A study protocol for a randomised open-label clinical trial of artesunate-mefloquine versus chloroquine in patients with non-severe Plasmodium knowlesi malaria in Sabah, Malaysia (ACT KNOW trial). BMJ Open 2014; 4:e006005.
  59. Severe malaria. Trop Med Int Health 2014; 19 Suppl 1:7.
  60. Anstey NM, Douglas NM, Poespoprodjo JR, Price RN. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. Adv Parasitol 2012; 80:151.
  61. Lampah DA, Yeo TW, Malloy M, et al. Severe malarial thrombocytopenia: a risk factor for mortality in Papua, Indonesia. J Infect Dis 2015; 211:623.
  62. Douglas NM, Anstey NM, Buffet PA, et al. The anaemia of Plasmodium vivax malaria. Malar J 2012; 11:135.
  63. Barber BE, William T, Grigg MJ, et al. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog 2015; 11:e1004558.
  64. LUBITZ JM. Pathology of the ruptured spleen in acute vivax malaria. Blood 1949; 4:1168.
  65. Gockel HR, Heidemann J, Lorenz D, Gockel I. Spontaneous splenic rupture, in tertian malaria. Infection 2006; 34:43.
  66. Jiménez BC, Navarro M, Huerga H, López-Vélez R. Spontaneous splenic rupture due to Plasmodium vivax in a traveler: case report and review. J Travel Med 2007; 14:188.
  67. Facer CA, Rouse D. Spontaneous splenic rupture due to Plasmodium ovale malaria. Lancet 1991; 338:896.
  68. Moudden MK, Boukhira A, Zyani M, et al. [Severe imported malaria: the experience of the Avicenna military hospital of Marrakech]. Sante 2006; 16:259.
  69. Davis TM, Singh B, Sheridan G. Parasitic procrastination: late-presenting ovale malaria and schistosomiasis. Med J Aust 2001; 175:146.
  70. Miyashita N, Karino T, Nagatomo Y, et al. [A case of Plasmodium ovale malaria with thrombocytopenia and an abnormality grade in FDP concentration despite the use of chloroquine as a malaria prophylaxis]. Kansenshogaku Zasshi 1995; 69:450.
  71. GILLES HM, HENDRICKSE RG. Possible aetiological role of Plasmodium malariae in "nephrotic syndrome" in Nigerian children. Lancet 1960; 1:806.
  72. Abdurrahman MB, Greenwood BM, Narayana P, et al. Immunological aspects of nephrotic syndrome in northern Nigeria. Arch Dis Child 1981; 56:199.
  73. Abdurrahman MB, Aikhionbare HA, Babaoye FA, et al. Clinicopathological features of childhood nephrotic syndrome in northern Nigeria. Q J Med 1990; 75:563.
  74. Vinetz JM, Li J, McCutchan TF, Kaslow DC. Plasmodium malariae infection in an asymptomatic 74-year-old Greek woman with splenomegaly. N Engl J Med 1998; 338:367.
  75. Langford S, Douglas NM, Lampah DA, et al. Plasmodium malariae Infection Associated with a High Burden of Anemia: A Hospital-Based Surveillance Study. PLoS Negl Trop Dis 2015; 9:e0004195.
  76. Michaud E, Ninet J, Coppère B, et al. [Nephrotic syndrome caused by Plasmodium malariae infection. A case with favourable outcome]. Presse Med 1992; 21:1386.
  77. Anochie I, Eke F, Okpere A. Childhood nephrotic syndrome: change in pattern and response to steroids. J Natl Med Assoc 2006; 98:1977.
  78. Ehrich JH, Eke FU. Malaria-induced renal damage: facts and myths. Pediatr Nephrol 2007; 22:626.
  79. Neri S, Pulvirenti D, Patamia I, et al. Acute renal failure in Plasmodium malariae infection. Neth J Med 2008; 66:166.
  80. Daneshvar C, Davis TM, Cox-Singh J, et al. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis 2009; 49:852.
  81. Cox-Singh J, Davis TM, Lee KS, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 2008; 46:165.
  82. William T, Menon J, Rajahram G, et al. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerg Infect Dis 2011; 17:1248.
  83. Barber BE, William T, Grigg MJ, et al. A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis 2013; 56:383.
  84. Fornace KM, Nuin NA, Betson M, et al. Asymptomatic and Submicroscopic Carriage of Plasmodium knowlesi Malaria in Household and Community Members of Clinical Cases in Sabah, Malaysia. J Infect Dis 2016; 213:784.
  85. Schwartz E, Parise M, Kozarsky P, Cetron M. Delayed onset of malaria--implications for chemoprophylaxis in travelers. N Engl J Med 2003; 349:1510.
  86. Battle KE, Karhunen MS, Bhatt S, et al. Geographical variation in Plasmodium vivax relapse. Malar J 2014; 13:144.
  87. Ingram RJ, Crenna-Darusallam C, Soebianto S, et al. The clinical and public health problem of relapse despite primaquine therapy: case review of repeated relapses of Plasmodium vivax acquired in Papua New Guinea. Malar J 2014; 13:488.
  88. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 2011; 10:297.
  89. Joshi H, Prajapati SK, Verma A, et al. Plasmodium vivax in India. Trends Parasitol 2008; 24:228.
  90. Imwong M, Boel ME, Pagornrat W, et al. The first Plasmodium vivax relapses of life are usually genetically homologous. J Infect Dis 2012; 205:680.
  91. Shanks GD, White NJ. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis 2013; 13:900.
  92. Chin W, Coatney GR. Relapse activity in sporozoite-induced infections with a West African strain of Plasmodium ovale. Am J Trop Med Hyg 1971; 20:825.
  93. Chin W, Contacos PG. A recently isolated West African strain of plasmodium ovale. Am J Trop Med Hyg 1966; 15:1.
  95. Hoffman SL, Piessens WF, Ratiwayanto S, et al. Reduction of suppressor T lymphocytes in the tropical splenomegaly syndrome. N Engl J Med 1984; 310:337.
  96. Vriend WH, Hoffman SL, Silaban T, Zaini M. Splenectomy in massive tropical splenomegaly: two-to six-year follow-up in 14 patients. Trop Geogr Med 1988; 40:298.
  97. Moraes MF, Soares M, Arroz MJ, et al. [New concepts in hyperactive malarial splenomegaly]. Acta Med Port 2003; 16:41.
  98. Paparello SF, Hoffman SL. Hyperreactive malarial splenomegaly: part I. Postgrad Med 1992; 15:336.
  99. Mothe B, Lopez-Contreras J, Torres OH, et al. A case of hyper-reactive malarial splenomegaly. The role of rapid antigen-detecting and PCR-based tests. Infection 2008; 36:167.
  100. Gupta OP, Bajaj S, Gupta SC. A study on tropical splenomegaly syndrome and chloroquine prophylaxis. J Assoc Physicians India 1989; 37:570.
  101. McGregor A, Doherty T, Lowe P, et al. Hyperreactive Malarial Splenomegaly Syndrome--Can the Diagnostic Criteria Be Improved? Am J Trop Med Hyg 2015; 93:573.
  102. Wilson ME, Weld LH, Boggild A, et al. Fever in returned travelers: results from the GeoSentinel Surveillance Network. Clin Infect Dis 2007; 44:1560.
  103. Svenson JE, MacLean JD, Gyorkos TW, Keystone J. Imported malaria. Clinical presentation and examination of symptomatic travelers. Arch Intern Med 1995; 155:861.
  104. Roth JM, Korevaar DA, Leeflang MM, Mens PF. Molecular malaria diagnostics: A systematic review and meta-analysis. Crit Rev Clin Lab Sci 2016; 53:87.
  105. Rodríguez-Morales AJ, Sánchez E, Vargas M, et al. Anemia and thrombocytopenia in children with Plasmodium vivax malaria. J Trop Pediatr 2006; 52:49.
  106. Douglas NM, Anstey NM, Angus BJ, et al. Artemisinin combination therapy for vivax malaria. Lancet Infect Dis 2010; 10:405.
  107. Siswantoro H, Russell B, Ratcliff A, et al. In vivo and in vitro efficacy of chloroquine against Plasmodium malariae and P. ovale in Papua, Indonesia. Antimicrob Agents Chemother 2011; 55:197.
  108. Gogtay N, Kannan S, Thatte UM, et al. Artemisinin-based combination therapy for treating uncomplicated Plasmodium vivax malaria. Cochrane Database Syst Rev 2013; :CD008492.
  109. Grigg MJ, William T, Menon J, et al. Artesunate-mefloquine versus chloroquine for treatment of uncomplicated Plasmodium knowlesi malaria in Malaysia (ACT KNOW): an open-label, randomised controlled trial. Lancet Infect Dis 2016; 16:180.
  110. Griffith KS, Lewis LS, Mali S, Parise ME. Treatment of malaria in the United States: a systematic review. JAMA 2007; 297:2264.
  111. Ringwald P, Bickii J, Same-Ekobo A, Basco LK. Pyronaridine for treatment of Plasmodium ovale and Plasmodium malariae infections. Antimicrob Agents Chemother 1997; 41:2317.
  112. Genton B, Baea K, Lorry K, et al. Parasitological and clinical efficacy of standard treatment regimens against Plasmodium falciparum, P. vivax and P. malariae in Papua New Guinea. P N G Med J 2005; 48:141.
  113. Borrmann S, Szlezák N, Binder RK, et al. Evidence for the efficacy of artesunate in asymptomatic Plasmodium malariae infections. J Antimicrob Chemother 2002; 50:751.
  114. Awab GR, Pukrittayakamee S, Imwong M, et al. Dihydroartemisinin-piperaquine versus chloroquine to treat vivax malaria in Afghanistan: an open randomized, non-inferiority, trial. Malar J 2010; 9:105.
  115. Phyo AP, Lwin KM, Price RN, et al. Dihydroartemisinin-piperaquine versus chloroquine in the treatment of Plasmodium vivax malaria in Thailand: a randomized controlled trial. Clin Infect Dis 2011; 53:977.
  116. Price RN, Auburn S, Marfurt J, Cheng Q. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol 2012; 28:522.
  117. Abreha T, Hwang J, Thriemer K, et al. Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomized controlled trial. PLoS Med 2017; 14:e1002299.
  118. Ratcliff A, Siswantoro H, Kenangalem E, et al. Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet 2007; 369:757.
  119. Karunajeewa HA, Mueller I, Senn M, et al. A trial of combination antimalarial therapies in children from Papua New Guinea. N Engl J Med 2008; 359:2545.
  120. Pasaribu AP, Chokejindachai W, Sirivichayakul C, et al. A randomized comparison of dihydroartemisinin-piperaquine and artesunate-amodiaquine combined with primaquine for radical treatment of vivax malaria in Sumatera, Indonesia. J Infect Dis 2013; 208:1906.
  121. Hasugian AR, Purba HL, Kenangalem E, et al. Dihydroartemisinin-piperaquine versus artesunate-amodiaquine: superior efficacy and posttreatment prophylaxis against multidrug-resistant Plasmodium falciparum and Plasmodium vivax malaria. Clin Infect Dis 2007; 44:1067.
  122. Grigg MJ, William T, Menon J, et al. Efficacy of Artesunate-mefloquine for Chloroquine-resistant Plasmodium vivax Malaria in Malaysia: An Open-label, Randomized, Controlled Trial. Clin Infect Dis 2016; 62:1403.
  123. Siqueira AM, Alencar AC, Melo GC, et al. Fixed-Dose Artesunate-Amodiaquine Combination vs Chloroquine for Treatment of Uncomplicated Blood Stage P. vivax Infection in the Brazilian Amazon: An Open-Label Randomized, Controlled Trial. Clin Infect Dis 2017; 64:166.
  124. Maguire JD, Krisin, Marwoto H, et al. Mefloquine is highly efficacious against chloroquine-resistant Plasmodium vivax malaria and Plasmodium falciparum malaria in Papua, Indonesia. Clin Infect Dis 2006; 42:1067.
  125. Lacy MD, Maguire JD, Barcus MJ, et al. Atovaquone/proguanil therapy for Plasmodium falciparum and Plasmodium vivax malaria in Indonesians who lack clinical immunity. Clin Infect Dis 2002; 35:e92.
  126. Pukrittayakamee S, Chantra A, Simpson JA, et al. Therapeutic responses to different antimalarial drugs in vivax malaria. Antimicrob Agents Chemother 2000; 44:1680.
  127. John GK, Douglas NM, von Seidlein L, et al. Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar J 2012; 11:280.
  128. Galappaththy GN, Tharyan P, Kirubakaran R. Primaquine for preventing relapse in people with Plasmodium vivax malaria treated with chloroquine. Cochrane Database Syst Rev 2013; :CD004389.
  129. Nelwan EJ, Ekawati LL, Tjahjono B, et al. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. BMC Med 2015; 13:294.
  130. Baird JK, Rieckmann KH. Can primaquine therapy for vivax malaria be improved? Trends Parasitol 2003; 19:115.
  131. Maneeboonyang W, Lawpoolsri S, Puangsa-Art S, et al. Directly observed therapy with primaquine to reduce the recurrence rate of plasmodium vivax infection along the Thai-Myanmar border. Southeast Asian J Trop Med Public Health 2011; 42:9.
  132. von Seidlein L, Auburn S, Espino F, et al. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J 2013; 12:112.
  133. Hill DR, Baird JK, Parise ME, et al. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am J Trop Med Hyg 2006; 75:402.
  134. Bennett JW, Pybus BS, Yadava A, et al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med 2013; 369:1381.
  135. Baird JK, Hoffman SL. Primaquine therapy for malaria. Clin Infect Dis 2004; 39:1336.
  136. Rajapakse S, Rodrigo C, Fernando SD. Tafenoquine for preventing relapse in people with Plasmodium vivax malaria. Cochrane Database Syst Rev 2015; :CD010458.
  137. Llanos-Cuentas A, Lacerda MV, Rueangweerayut R, et al. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet 2014; 383:1049.
  138. White NJ. The assessment of antimalarial drug efficacy. Trends Parasitol 2002; 18:458.
  139. Leoni S, Buonfrate D, Angheben A, et al. The hyper-reactive malarial splenomegaly: a systematic review of the literature. Malar J 2015; 14:185.