Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.


Michele E Murdoch, BSc, FRCP
Section Editor
Peter F Weller, MD, MACP
Deputy Editor
Elinor L Baron, MD, DTMH


Onchocerciasis is caused by the filarial nematode Onchocerca volvulus. It is also known as "river blindness" because the blackfly vector breeds near fast-flowing streams and rivers. The disease affects rural communities and is a major cause of blindness and skin disease in endemic areas with serious socioeconomic consequences.


The number of infected people worldwide was estimated in 2006 to be 37 million [1]. More than 99 percent of cases occur in 27 countries in sub-Saharan Africa (figure 1). Overall, 120 million people live at risk of infection in endemic countries in Africa. Smaller foci of infection have been found in Yemen and Central and Southern America (Mexico, Guatemala, Ecuador, Colombia, Venezuela, and Brazil).

The first confirmed elimination of an onchocerciasis focus in Africa occurred Abu Hamed, Sudan, in 2016 [2]. Four countries in the Americas (Colombia, Ecuador, Mexico, and Guatemala) have completed the WHO verification process for elimination [3]. Transmission is ongoing in one focus in Venezuela and one in Brazil (figure 2). (See 'Mass treatment' below.)

Onchocerciasis is the second-leading infectious cause of blindness worldwide: approximately 500,000 people are blind due to onchocerciasis [4]. The epidemiologic patterns of infection differ between savanna and forest regions.

In West African savanna areas, ocular onchocerciasis is common; it particularly affects the anterior segment of the eye, though the posterior eye segment can also be affected. The risks of visual impairment increase, in part, as the prevalence and intensity of infection in a community rises [5]. The prevalence of infection can vary between villages and was historically as high as 80 to 100 percent by the age of 20 years in some areas, with blindness peaking at 40 to 50 years of age. Prior to control activities, hyperendemic regions were frequently depopulated because of high rates of blindness.

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information on subscription options, click below on the option that best describes you:

Subscribers log in here

Literature review current through: Nov 2017. | This topic last updated: Nov 28, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Basáñez MG, Pion SD, Churcher TS, et al. River blindness: a success story under threat? PLoS Med 2006; 3:e371.
  2. Zarroug IM, Hashim K, ElMubark WA, et al. The First Confirmed Elimination of an Onchocerciasis Focus in Africa: Abu Hamed, Sudan. Am J Trop Med Hyg 2016; 95:1037.
  3. Progress towards eliminating onchocerciasis in the WHO Region of the Americas: verification of elimination of transmission in Guatemala. Wkly Epidemiol Rec 2016; 91:501.
  4. World Health Organization. Prevention of blindness and visual impairment: priority eye diseases. http://www.who.int/blindness/causes/priority/en/index3.html (Accessed on October 10, 2011).
  5. Remme J, Dadzie KY, Rolland A, Thylefors B. Ocular onchocerciasis and intensity of infection in the community. I. West African savanna. Trop Med Parasitol 1989; 40:340.
  6. Murdoch ME, Asuzu MC, Hagan M, et al. Onchocerciasis: the clinical and epidemiological burden of skin disease in Africa. Ann Trop Med Parasitol 2002; 96:283.
  7. Remme JHF. The global burden of onchocerciasis in 1990. World Health Organization, Geneva 2004. http://www.who.int/healthinfo/global_burden_disease/Onchocerciasis%201990.pdf (Accessed on April 25, 2011).
  8. Higazi TB, Filiano A, Katholi CR, et al. Wolbachia endosymbiont levels in severe and mild strains of Onchocerca volvulus. Mol Biochem Parasitol 2005; 141:109.
  9. Norman FF, Pérez de Ayala A, Pérez-Molina JA, et al. Neglected tropical diseases outside the tropics. PLoS Negl Trop Dis 2010; 4:e762.
  10. Otranto D, Sakru N, Testini G, et al. Case report: First evidence of human zoonotic infection by Onchocerca lupi (Spirurida, Onchocercidae). Am J Trop Med Hyg 2011; 84:55.
  11. Cantey PT, Weeks J, Edwards M, et al. The Emergence of Zoonotic Onchocerca lupi Infection in the United States--A Case-Series. Clin Infect Dis 2016; 62:778.
  12. Brattig NW. Pathogenesis and host responses in human onchocerciasis: impact of Onchocerca filariae and Wolbachia endobacteria. Microbes Infect 2004; 6:113.
  13. Saint André Av, Blackwell NM, Hall LR, et al. The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 2002; 295:1892.
  14. Brattig NW, Bazzocchi C, Kirschning CJ, et al. The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J Immunol 2004; 173:437.
  15. Hise AG, Daehnel K, Gillette-Ferguson I, et al. Innate immune responses to endosymbiotic Wolbachia bacteria in Brugia malayi and Onchocerca volvulus are dependent on TLR2, TLR6, MyD88, and Mal, but not TLR4, TRIF, or TRAM. J Immunol 2007; 178:1068.
  16. Gillette-Ferguson I, Daehnel K, Hise AG, et al. Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis. Infect Immun 2007; 75:5908.
  17. Gentil K, Pearlman E. Gamma interferon and interleukin-1 receptor 1 regulate neutrophil recruitment to the corneal stroma in a murine model of Onchocerca volvulus keratitis. Infect Immun 2009; 77:1606.
  18. McKechnie NM, Gürr W, Yamada H, et al. Antigenic mimicry: Onchocerca volvulus antigen-specific T cells and ocular inflammation. Invest Ophthalmol Vis Sci 2002; 43:411.
  19. Timmann C, Abraha RS, Hamelmann C, et al. Cutaneous pathology in onchocerciasis associated with pronounced systemic T-helper 2-type responses to Onchocerca volvulus. Br J Dermatol 2003; 149:782.
  20. Murdoch ME, Payton A, Abiose A, et al. HLA-DQ alleles associate with cutaneous features of onchocerciasis. The Kaduna-London-Manchester Collaboration for Research on Onchocerciasis. Hum Immunol 1997; 55:46.
  21. Murdoch ME, Abiose A, Garate T, et al. Human onchocerciasis in Nigeria: isotypic responses and antigen recognition in individuals with defined cutaneous pathology. Am J Trop Med Hyg 1996; 54:600.
  22. Ali MM, Elghazali G, Montgomery SM, et al. Fc gamma RIIa (CD32) polymorphism and onchocercal skin disease: implications for the development of severe reactive onchodermatitis (ROD). Am J Trop Med Hyg 2007; 77:1074.
  23. Timmann C, van der Kamp E, Kleensang A, et al. Human genetic resistance to Onchocerca volvulus: evidence for linkage to chromosome 2p from an autosome-wide scan. J Infect Dis 2008; 198:427.
  24. Ali MM, Baraka OZ, AbdelRahman SI, et al. Immune responses directed against microfilariae correlate with severity of clinical onchodermatitis and treatment history. J Infect Dis 2003; 187:714.
  25. Brattig NW, Lepping B, Timmann C, et al. Onchocerca volvulus-exposed persons fail to produce interferon-gamma in response to O. volvulus antigen but mount proliferative responses with interleukin-5 and IL-13 production that decrease with increasing microfilarial density. J Infect Dis 2002; 185:1148.
  26. Hoerauf A, Kruse S, Brattig NW, et al. The variant Arg110Gln of human IL-13 is associated with an immunologically hyper-reactive form of onchocerciasis (sowda). Microbes Infect 2002; 4:37.
  27. Steel C, Nutman TB. CTLA-4 in filarial infections: implications for a role in diminished T cell reactivity. J Immunol 2003; 170:1930.
  28. Satoguina J, Mempel M, Larbi J, et al. Antigen-specific T regulatory-1 cells are associated with immunosuppression in a chronic helminth infection (onchocerciasis). Microbes Infect 2002; 4:1291.
  29. Allen JE, Adjei O, Bain O, et al. Of mice, cattle, and humans: the immunology and treatment of river blindness. PLoS Negl Trop Dis 2008; 2:e217.
  30. Satoguina JS, Adjobimey T, Arndts K, et al. Tr1 and naturally occurring regulatory T cells induce IgG4 in B cells through GITR/GITR-L interaction, IL-10 and TGF-beta. Eur J Immunol 2008; 38:3101.
  31. Adjobimey T, Hoerauf A. Induction of immunoglobulin G4 in human filariasis: an indicator of immunoregulation. Ann Trop Med Parasitol 2010; 104:455.
  32. Brattig NW, Schwohl A, Rickert R, Büttner DW. The filarial parasite Onchocerca volvulus generates the lipid mediator prostaglandin E(2). Microbes Infect 2006; 8:873.
  33. Brattig NW, Schwohl A, Hoerauf A, Büttner DW. Identification of the lipid mediator prostaglandin E2 in tissue immune cells of humans infected with the filaria Onchocerca volvulus. Acta Trop 2009; 112:231.
  34. Korten S, Hoerauf A, Kaifi JT, Büttner DW. Low levels of transforming growth factor-beta (TGF-beta) and reduced suppression of Th2-mediated inflammation in hyperreactive human onchocerciasis. Parasitology 2011; 138:35.
  35. Liebau E, Höppner J, Mühlmeister M, et al. The secretory omega-class glutathione transferase OvGST3 from the human pathogenic parasite Onchocerca volvulus. FEBS J 2008; 275:3438.
  36. Cho-Ngwa F, Liu J, Lustigman S. The Onchocerca volvulus cysteine proteinase inhibitor, Ov-CPI-2, is a target of protective antibody response that increases with age. PLoS Negl Trop Dis 2010; 4:e800.
  37. Budden FH. The natural history of ocular onchocerciasis over a period of 14--15 years and the effect on this of a single course of suramin therapy. Trans R Soc Trop Med Hyg 1976; 70:484.
  38. Kluxen G, Hoerauf A. The significance of some observations on African ocular onchocerciasis described by Jean Hissette (1888-1965). Bull Soc Belge Ophtalmol 2008; :53.
  39. Apple DJ. Sir Nicholas Harold Lloyd Ridley: 10 July 1906 - 25 May 2001. Biogr Mem Fellows R Soc 2007; 53:285.
  40. Murdoch ME, Hay RJ, Mackenzie CD, et al. A clinical classification and grading system of the cutaneous changes in onchocerciasis. Br J Dermatol 1993; 129:260.
  41. Burnham GM. Onchocerciasis in Malawi. 2. Subjective complaints and decreased weight in persons infected with Onchocerca volvulus in the Thyolo highlands. Trans R Soc Trop Med Hyg 1991; 85:497.
  42. Pion SD, Kaiser C, Boutros-Toni F, et al. Epilepsy in onchocerciasis endemic areas: systematic review and meta-analysis of population-based surveys. PLoS Negl Trop Dis 2009; 3:e461.
  43. König R, Nassri A, Meindl M, et al. The role of Onchocerca volvulus in the development of epilepsy in a rural area of Tanzania. Parasitology 2010; 137:1559.
  44. Kaiser C, Pion SD, Boussinesq M. Case-control studies on the relationship between onchocerciasis and epilepsy: systematic review and meta-analysis. PLoS Negl Trop Dis 2013; 7:e2147.
  45. Johnson TP, Tyagi R, Lee PR, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus. Sci Transl Med 2017; 9.
  46. Little MP, Breitling LP, Basáñez MG, et al. Association between microfilarial load and excess mortality in onchocerciasis: an epidemiological study. Lancet 2004; 363:1514.
  47. Walker M, Little MP, Wagner KS, et al. Density-dependent mortality of the human host in onchocerciasis: relationships between microfilarial load and excess mortality. PLoS Negl Trop Dis 2012; 6:e1578.
  48. Ezzedine K, Malvy D, Dhaussy I, et al. Onchocerciasis-associated limb swelling in a traveler returning from Cameroon. J Travel Med 2006; 13:50.
  49. McCarthy JS, Ottesen EA, Nutman TB. Onchocerciasis in endemic and nonendemic populations: differences in clinical presentation and immunologic findings. J Infect Dis 1994; 170:736.
  50. Henry NL, Law M, Nutman TB, Klion AD. Onchocerciasis in a nonendemic population: clinical and immunologic assessment before treatment and at the time of presumed cure. J Infect Dis 2001; 183:512.
  51. Niamba P, Gaulier A, Taïeb A. Hanging groin and persistent pruritus in a patient from Burkina Faso. Int J Dermatol 2007; 46:485.
  52. Enk CD, Anteby I, Abramson N, et al. Onchocerciasis among Ethiopian immigrants in Israel. Isr Med Assoc J 2003; 5:485.
  53. Sentongo E, Rubaale T, Büttner DW, Brattig NW. T cell responses in coinfection with Onchocerca volvulus and the human immunodeficiency virus type 1. Parasite Immunol 1998; 20:431.
  54. Tawill SA, Gallin M, Erttmann KD, et al. Impaired antibody responses and loss of reactivity to Onchocerca volvulus antigens by HIV-seropositive onchocerciasis patients. Trans R Soc Trop Med Hyg 1996; 90:85.
  55. Fischer P, Kipp W, Kabwa P, Buttner DW. Onchocerciasis and human immunodeficiency virus in western Uganda: prevalences and treatment with ivermectin. Am J Trop Med Hyg 1995; 53:171.
  56. Kipp W, Bamuhiiga J, Rubaale T. Simulium neavei-transmitted onchocerciasis: HIV infection increases severity of onchocercal skin disease in a small sample of patients. Trans R Soc Trop Med Hyg 2003; 97:310.
  57. Kipp W, Bamhuhiiga J, Rubaale T, Kabagambe G. Adverse reactions to the ivermectin treatment of onchocerciasis patients: does infection with the human immunodeficiency virus play a role? Ann Trop Med Parasitol 2005; 99:395.
  58. Evans TG. Socioeconomic consequences of blinding onchocerciasis in west Africa. Bull World Health Organ 1995; 73:495.
  59. Hotez PJ, Kamath A. Neglected tropical diseases in sub-saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Negl Trop Dis 2009; 3:e412.
  60. Amazigo U. Onchocerciasis and women's reproductive health: indigenous and biomedical concepts. Trop Doct 1993; 23:149.
  61. Vlassoff C, Weiss M, Ovuga EB, et al. Gender and the stigma of onchocercal skin disease in Africa. Soc Sci Med 2000; 50:1353.
  62. Mbanefo EC, Eneanya CI, Nwaorgu OC, et al. Onchocerciasis in Anambra State, Southeast Nigeria: clinical and psychological aspects and sustainability of community directed treatment with ivermectin (CDTI). Postgrad Med J 2010; 86:573.
  63. Benton B. Economic impact of onchocerciasis control through the African Programme for Onchocerciasis Control: an overview. Ann Trop Med Parasitol 1998; 92 Suppl 1:S33.
  64. Boatin BA, Richards FO Jr. Control of onchocerciasis. Adv Parasitol 2006; 61:349.
  65. Skin snips for Onchocerca volvulus http://www.emro.who.int/publications/RegionalPublications/Specimen_Collection/Spcec_coll_Body_Surface_skin_Snips.htm (Accessed on October 10, 2011).
  66. Lloyd MM, Gilbert R, Taha NT, et al. Conventional parasitology and DNA-based diagnostic methods for onchocerciasis elimination programmes. Acta Trop 2015; 146:114.
  67. Lagatie O, Merino M, Batsa Debrah L, et al. An isothermal DNA amplification method for detection of Onchocerca volvulus infection in skin biopsies. Parasit Vectors 2016; 9:624.
  68. Ozoh G, Boussinesq M, Bissek AC, et al. Evaluation of the diethylcarbamazine patch to evaluate onchocerciasis endemicity in Central Africa. Trop Med Int Health 2007; 12:123.
  69. Toè L, Adjami AG, Boatin BA, et al. Topical application of diethylcarbamazine to detect onchocerciasis recrudescence in west Africa. Trans R Soc Trop Med Hyg 2000; 94:519.
  70. Meeting of the national onchocerciasis task forces, September 2010. Wkly Epidemiol Rec 2010; 48:473.
  71. Lipner EM, Dembele N, Souleymane S, et al. Field applicability of a rapid-format anti-Ov-16 antibody test for the assessment of onchocerciasis control measures in regions of endemicity. J Infect Dis 2006; 194:216.
  72. Burbelo PD, Leahy HP, Iadarola MJ, Nutman TB. A four-antigen mixture for rapid assessment of Onchocerca volvulus infection. PLoS Negl Trop Dis 2009; 3:e438.
  73. Ayong LS, Tume CB, Wembe FE, et al. Development and evaluation of an antigen detection dipstick assay for the diagnosis of human onchocerciasis. Trop Med Int Health 2005; 10:228.
  74. Park J, Dickerson TJ, Janda KD. Major sperm protein as a diagnostic antigen for onchocerciasis. Bioorg Med Chem 2008; 16:7206.
  75. Cho-Ngwa F, Zhu X, Metuge JA, et al. Identification of in vivo released products of Onchocerca with diagnostic potential, and characterization of a dominant member, the OV1CF intermediate filament. Infect Genet Evol 2011; 11:778.
  76. Denery JR, Nunes AA, Hixon MS, et al. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis. PLoS Negl Trop Dis 2010; 4.
  77. Vincent JA, Lustigman S, Zhang S, Weil GJ. A comparison of newer tests for the diagnosis of onchocerciasis. Ann Trop Med Parasitol 2000; 94:253.
  78. Boatin BA, Toé L, Alley ES, et al. Detection of Onchocerca volvulus infection in low prevalence areas: a comparison of three diagnostic methods. Parasitology 2002; 125:545.
  79. Mand S, Marfo-Debrekyei Y, Debrah A, et al. Frequent detection of worm movements in onchocercal nodules by ultrasonography. Filaria J 2005; 4:1.
  80. Duke BO. Evidence for macrofilaricidal activity of ivermectin against female Onchocerca volvulus: further analysis of a clinical trial in the Republic of Cameroon indicating two distinct killing mechanisms. Parasitology 2005; 130:447.
  81. Hoerauf A, Volkmann L, Hamelmann C, et al. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 2000; 355:1242.
  82. Johnston KL, Taylor MJ. Wolbachia in filarial parasites: targets for filarial infection and disease control. Curr Infect Dis Rep 2007; 9:55.
  83. Walker M, Specht S, Churcher TS, et al. Therapeutic efficacy and macrofilaricidal activity of doxycycline for the treatment of river blindness. Clin Infect Dis 2015; 60:1199.
  84. Debrah AY, Specht S, Klarmann-Schulz U, et al. Doxycycline Leads to Sterility and Enhanced Killing of Female Onchocerca volvulus Worms in an Area With Persistent Microfilaridermia After Repeated Ivermectin Treatment: A Randomized, Placebo-Controlled, Double-Blind Trial. Clin Infect Dis 2015; 61:517.
  85. Abegunde AT, Ahuja RM, Okafor NJ. Doxycycline plus ivermectin versus ivermectin alone for treatment of patients with onchocerciasis. Cochrane Database Syst Rev 2016; :CD011146.
  86. Hoerauf A, Mand S, Adjei O, et al. Depletion of wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet 2001; 357:1415.
  87. Hoerauf A, Specht S, Büttner M, et al. Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med Microbiol Immunol 2008; 197:295.
  88. Richards FO Jr, Amann J, Arana B, et al. No depletion of Wolbachia from Onchocerca volvulus after a short course of rifampin and/or azithromycin. Am J Trop Med Hyg 2007; 77:878.
  89. Specht S, Mand S, Marfo-Debrekyei Y, et al. Efficacy of 2- and 4-week rifampicin treatment on the Wolbachia of Onchocerca volvulus. Parasitol Res 2008; 103:1303.
  90. Wu B, Novelli J, Foster J, et al. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target. PLoS Negl Trop Dis 2009; 3:e475.
  91. Johnston KL, Wu B, Guimarães A, et al. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes. Parasit Vectors 2010; 3:99.
  92. Awadzi K, Opoku NO, Attah SK, et al. A randomized, single-ascending-dose, ivermectin-controlled, double-blind study of moxidectin in Onchocerca volvulus infection. PLoS Negl Trop Dis 2014; 8:e2953.
  93. Siva N. WHO researchers start trial on a new drug for river blindness. BMJ 2009; 339:b2755.
  94. Gloeckner C, Garner AL, Mersha F, et al. Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proc Natl Acad Sci U S A 2010; 107:3424.
  95. Boakye DA, Fokam E, Ghansah A, et al. Cardiocladius oliffi (Diptera: Chironomidae) as a potential biological control agent against Simulium squamosum (Diptera: Simuliidae). Parasit Vectors 2009; 2:20.
  96. Gardon J, Boussinesq M, Kamgno J, et al. Effects of standard and high doses of ivermectin on adult worms of Onchocerca volvulus: a randomised controlled trial. Lancet 2002; 360:203.
  97. Hoerauf AM. Onchocerciasis. In: Tropical Infectious Diseases: Principles, Pathogens and Practice, 3rd ed, Guerrant R, Walker DH, Weller PF (Eds), Saunders Elsevier, Philadelphia 2011. p.741.
  98. Keiser PB, Reynolds SM, Awadzi K, et al. Bacterial endosymbionts of Onchocerca volvulus in the pathogenesis of posttreatment reactions. J Infect Dis 2002; 185:805.
  99. Pacqué M, Muñoz B, Poetschke G, et al. Pregnancy outcome after inadvertent ivermectin treatment during community-based distribution. Lancet 1990; 336:1486.
  100. Rodríguez-Pérez MA, Lutzow-Steiner MA, Segura-Cabrera A, et al. Rapid suppression of Onchocerca volvulus transmission in two communities of the Southern Chiapas focus, Mexico, achieved by quarterly treatments with Mectizan. Am J Trop Med Hyg 2008; 79:239.
  101. Pion SD, Grout L, Kamgno J, et al. Individual host factors associated with Onchocerca volvulus microfilarial densities 15, 80 and 180 days after a first dose of ivermectin. Acta Trop 2011; 120 Suppl 1:S91.
  102. Awadzi K, Boakye DA, Edwards G, et al. An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol 2004; 98:231.
  103. Kudzi W, Dodoo AN, Mills JJ. Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans? BMC Med Genet 2010; 11:111.
  104. Churcher TS, Pion SD, Osei-Atweneboana MY, et al. Identifying sub-optimal responses to ivermectin in the treatment of River Blindness. Proc Natl Acad Sci U S A 2009; 106:16716.
  105. Twum-Danso NA, Meredith SE. Variation in incidence of serious adverse events after onchocerciasis treatment with ivermectin in areas of Cameroon co-endemic for loiasis. Trop Med Int Health 2003; 8:820.
  106. Makenga Bof JC, Maketa V, Bakajika DK, et al. Onchocerciasis control in the Democratic Republic of Congo (DRC): challenges in a post-war environment. Trop Med Int Health 2015; 20:48.
  107. Klion AD, Horton J, Nutman TB. Albendazole therapy for loiasis refractory to diethylcarbamazine treatment. Clin Infect Dis 1999; 29:680.
  108. Churchill DR, Godfrey-Faussett P, Birley HD, et al. A trial of a three-dose regimen of ivermectin for the treatment of patients with onchocerciasis in the UK. Trans R Soc Trop Med Hyg 1994; 88:242.
  109. Godfrey-Faussett P, Dow C, Black ME, Bryceson AD. Ivermectin in the treatment of onchocerciasis in Britain. Trop Med Parasitol 1991; 42:82.
  110. Hoerauf A. Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis 2008; 21:673.
  111. CDC. Parasites - Onchocerciasis (also known as River Blindness): Resources for Health Professionals. http://www.cdc.gov/parasites/onchocerciasis/health_profesionals/index.html#tx (Accessed on September 03, 2013).
  112. Frempong KK, Walker M, Cheke RA, et al. Does Increasing Treatment Frequency Address Suboptimal Responses to Ivermectin for the Control and Elimination of River Blindness? Clin Infect Dis 2016; 62:1338.
  113. Dadzie KY, Remme J, De Sole G. Changes in ocular onchocerciasis after two rounds of community-based ivermectin treatment in a holo-endemic onchocerciasis focus. Trans R Soc Trop Med Hyg 1991; 85:267.
  114. Whitworth JA, Gilbert CE, Mabey DM, et al. Effects of repeated doses of ivermectin on ocular onchocerciasis: community-based trial in Sierra Leone. Lancet 1991; 338:1100.
  115. Chippaux JP, Boussinesq M, Fobi G, et al. Effect of repeated ivermectin treatments on ocular onchocerciasis: evaluation after six to eight doses. Ophthalmic Epidemiol 1999; 6:229.
  116. Kennedy MH, Bertocchi I, Hopkins AD, Meredith SE. The effect of 5 years of annual treatment with ivermectin (Mectizan) on the prevalence and morbidity of onchocerciasis in the village of Gami in the Central African Republic. Ann Trop Med Parasitol 2002; 96:297.
  117. Emukah EC, Osuoha E, Miri ES, et al. A longitudinal study of impact of repeated mass ivermectin treatment on clinical manifestations of onchocerciasis in Imo State, Nigeria. Am J Trop Med Hyg 2004; 70:556.
  118. Abiose A, Jones BR, Cousens SN, et al. Reduction in incidence of optic nerve disease with annual ivermectin to control onchocerciasis. Lancet 1993; 341:130.
  119. Cousens SN, Cassels-Brown A, Murdoch I, et al. Impact of annual dosing with ivermectin on progression of onchocercal visual field loss. Bull World Health Organ 1997; 75:229.
  120. Whitworth JA, Maude GH, Downham MD. Clinical and parasitological responses after up to 6.5 years of ivermectin treatment for onchocerciasis. Trop Med Int Health 1996; 1:786.
  121. Anosike JC, Dozie IN, Ameh GI, et al. The varied beneficial effects of ivermectin (Mectizan) treatment, as observed within onchocerciasis foci in south-eastern Nigeria. Ann Trop Med Parasitol 2007; 101:593.
  122. Ozoh GA, Murdoch ME, Bissek AC, et al. The African Programme for Onchocerciasis Control: impact on onchocercal skin disease. Trop Med Int Health 2011; 16:875.
  123. Coffeng LE, Stolk WA, Zouré HG, et al. African programme for onchocerciasis control 1995-2015: updated health impact estimates based on new disability weights. PLoS Negl Trop Dis 2014; 8:e2759.
  124. Diawara L, Traoré MO, Badji A, et al. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis 2009; 3:e497.
  125. World Health Organization. Report of the External Mid-term Evaluation of the African Programme for Onchocerciasis Control, 2010. http://www.who.int/apoc/MidtermEvaluation_29Oct2010_final_printed.pdf (Accessed on April 28, 2011).
  126. Duerr HP, Eichner M. Epidemiology and control of onchocerciasis: the threshold biting rate of savannah onchocerciasis in Africa. Int J Parasitol 2010; 40:641.
  127. African Programme for Onchocerciasis Control: progress report, 2013-2014. Wkly Epidemiol Rec 2014; 89:551.
  128. Kamgno J, Pion SD, Chesnais CB, et al. A Test-and-Not-Treat Strategy for Onchocerciasis in Loa loa-Endemic Areas. N Engl J Med 2017; 377:2044.
  129. Turner JD, Tendongfor N, Esum M, et al. Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl Trop Dis 2010; 4:e660.
  130. Hougard JM, Alley ES, Yaméogo L, et al. Eliminating onchocerciasis after 14 years of vector control: a proved strategy. J Infect Dis 2001; 184:497.
  131. Thylefors B. The Mectizan Donation Program (MDP). Ann Trop Med Parasitol 2008; 102 Suppl 1:39.
  132. Turner HC, Walker M, Churcher TS, et al. Reaching the london declaration on neglected tropical diseases goals for onchocerciasis: an economic evaluation of increasing the frequency of ivermectin treatment in Africa. Clin Infect Dis 2014; 59:923.
  133. Sauerbrey M. The Onchocerciasis Elimination Program for the Americas (OEPA). Ann Trop Med Parasitol 2008; 102 Suppl 1:25.
  134. Report from the 2009 Inter-American Conference on Onchocerciasis: progress towards eliminating river blindness in the Region of the Americas. Wkly Epidemiol Rec 2010; 85:321.
  135. Centers for Disease Control and Prevention (CDC). Progress toward elimination of onchocerciasis in the Americas - 1993-2012. MMWR Morb Mortal Wkly Rep 2013; 62:405.
  136. World Health Organization. WHO declares Ecuador free of onchocerciasis (river blindness). http://www.who.int/neglected_diseases/ecuador_free_from_onchocerciasis/en/ (Accessed on September 21, 2015).
  137. Rodríguez-Pérez MA, Fernández-Santos NA, Orozco-Algarra ME, et al. Elimination of Onchocerciasis from Mexico. PLoS Negl Trop Dis 2015; 9:e0003922.
  138. Traoré S, Wilson MD, Sima A, et al. The elimination of the onchocerciasis vector from the island of Bioko as a result of larviciding by the WHO African Programme for Onchocerciasis Control. Acta Trop 2009; 111:211.
  139. Garms R, Lakwo TL, Ndyomugyenyi R, et al. The elimination of the vector Simulium neavei from the Itwara onchocerciasis focus in Uganda by ground larviciding. Acta Trop 2009; 111:203.
  140. CDI Study Group. Community-directed interventions for priority health problems in Africa: results of a multicountry study. Bull World Health Organ 2010; 88:509.