UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 73

of 'Molecular pathogenesis of exocrine pancreatic cancer'

73
TI
The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection.
AU
Maitra A, Cohen Y, Gillespie SE, Mambo E, Fukushima N, Hoque MO, Shah N, Goggins M, Califano J, Sidransky D, Chakravarti A
SO
Genome Res. 2004;14(5):812.
 
Somatic mitochondrial mutations are common in human cancers, and can be used as a tool for early detection of cancer. We have developed a mitochondrial Custom Reseq microarray as an array-based sequencing platform for rapid and high-throughput analysis of mitochondrial DNA. The MitoChip contains oligonucleotide probes synthesized using standard photolithography and solid-phase synthesis, and is able to sequence>29 kb of double-stranded DNA in a single assay. Both strands of the entire human mitochondrial coding sequence (15,451 bp) are arrayed on the MitoChip; both strands of an additional 12,935 bp (84% of coding DNA) are arrayed in duplicate. We used 300 ng of genomic DNA to amplify the mitochondrial coding sequence in three overlapping long PCR fragments. We then sequenced>2 million base pairs of mitochondrial DNA, and successfully assigned base calls at 96.0% of nucleotide positions. Replicate experiments demonstrated>99.99% reproducibility. In matched fluid samples (urine and pancreatic juice, respectively) obtained from five patients with bladder cancer and four with pancreatic cancer, the MitoChip detected at least one cancer-associated mitochondrial mutation in six (66%) of nine samples. The MitoChip is a high-throughput sequencing tool for the reliableidentification of mitochondrial DNA mutations from primary tumors in clinical samples.
AD
Department of Pathology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
PMID