Smarter Decisions,
Better Care

UpToDate synthesizes the most recent medical information into evidence-based practical recommendations clinicians trust to make the right point-of-care decisions.

  • Rigorous editorial process: Evidence-based treatment recommendations
  • World-Renowned physician authors: over 5,100 physician authors and editors around the globe
  • Innovative technology: integrates into the workflow; access from EMRs

Choose from the list below to learn more about subscriptions for a:


Subscribers log in here


Related articles

Malassezia infection

INTRODUCTION

Malassezia (formerly known as Pityrosporum) species are members of human cutaneous commensal flora, which are associated with a wide spectrum of clinical manifestations from benign skin conditions, such as tinea versicolor, to fungemia in the immunocompromised host [1-4].

The epidemiology, clinical manifestations, diagnosis and treatment of Malassezia infections will be discussed here. The clinical manifestations, diagnosis, and treatment of tinea versicolor are discussed elsewhere. (See "Tinea versicolor".)

MYCOLOGY

Malassezia are lipophilic yeasts that are constituents of the normal human skin flora. These organisms have been classified into at least 14 species, including M. furfur, M. pachydermatis, M. sympodialis, M. slooffiae, M. obtusa, M. globosa, and M. restricta, based upon polymerase chain reaction (PCR) and restriction endonuclease analysis [2,5-7].

EPIDEMIOLOGY

Malassezia species mainly colonize the skin and occasionally the respiratory tract [7,8]. The organisms appear to become part of the normal skin flora by three to six months of age. M. furfur was recovered from the skin in 32 to 64 percent of neonates in neonatal intensive care units in two separate series [9,10]. In one study, duration of stay in the unit and gestational age were factors favoring skin colonization [9].

Colonization of the skin with Malassezia and subsequent extension to central venous catheters appears more common in neonates than adults. M. furfur was recovered from the lumen in 32 percent of percutaneous central venous catheters in a neonatal intensive care unit in one series [10] but not from the insertion sites in 928 adults receiving total parenteral nutrition [11].

       

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Aug 2014. | This topic last updated: Aug 15, 2013.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
References
Top
  1. Crespo-Erchiga V, Florencio VD. Malassezia yeasts and pityriasis versicolor. Curr Opin Infect Dis 2006; 19:139.
  2. Ben Salah S, Makni F, Marrakchi S, et al. Identification of Malassezia species from Tunisian patients with pityriasis versicolor and normal subjects. Mycoses 2005; 48:242.
  3. Jahagirdar BN, Morrison VA. Emerging fungal pathogens in patients with hematologic malignancies and marrow/stem-cell transplant recipients. Semin Respir Infect 2002; 17:113.
  4. Ashbee HR, Evans EG. Immunology of diseases associated with Malassezia species. Clin Microbiol Rev 2002; 15:21.
  5. Gupta AK, Kohli Y, Faergemann J, Summerbell RC. Epidemiology of Malassezia yeasts associated with pityriasis versicolor in Ontario, Canada. Med Mycol 2001; 39:199.
  6. Gupta AK, Kohli Y, Summerbell RC. Molecular differentiation of seven Malassezia species. J Clin Microbiol 2000; 38:1869.
  7. Gaitanis G, Magiatis P, Hantschke M, et al. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 2012; 25:106.
  8. Smolinski KN, Shah SS, Honig PJ, Yan AC. Neonatal cutaneous fungal infections. Curr Opin Pediatr 2005; 17:486.
  9. Ashbee HR, Leck AK, Puntis JW, et al. Skin colonization by Malassezia in neonates and infants. Infect Control Hosp Epidemiol 2002; 23:212.
  10. Aschner JL, Punsalang A Jr, Maniscalco WM, Menegus MA. Percutaneous central venous catheter colonization with Malassezia furfur: incidence and clinical significance. Pediatrics 1987; 80:535.
  11. Jatoi A, Hanjosten K, Ross E, Mason JB. A prospective survey for central line skin-site colonization by the pathogen Malassezia furfur among hospitalized adults receiving total parenteral nutrition. JPEN J Parenter Enteral Nutr 1997; 21:230.
  12. Gupta AK, Kohli Y, Li A, et al. In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazole, itraconazole and terbinafine. Br J Dermatol 2000; 142:758.
  13. Papavassilis C, Mach KK, Mayser PA. Medium-chain triglycerides inhibit growth of Malassezia: implications for prevention of systemic infection. Crit Care Med 1999; 27:1781.
  14. Chryssanthou E, Broberger U, Petrini B. Malassezia pachydermatis fungaemia in a neonatal intensive care unit. Acta Paediatr 2001; 90:323.
  15. Chang HJ, Miller HL, Watkins N, et al. An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers' pet dogs. N Engl J Med 1998; 338:706.
  16. Morrison VA, Weisdorf DJ. The spectrum of Malassezia infections in the bone marrow transplant population. Bone Marrow Transplant 2000; 26:645.
  17. Cholongitas E, Pipili C, Ioannidou D. Malassezia folliculitis presented as acneiform eruption after cetuximab administration. J Drugs Dermatol 2009; 8:274.
  18. Barber GR, Brown AE, Kiehn TE, et al. Catheter-related Malassezia furfur fungemia in immunocompromised patients. Am J Med 1993; 95:365.
  19. Archer-Dubon C, Icaza-Chivez ME, Orozco-Topete R, et al. An epidemic outbreak of Malassezia folliculitis in three adult patients in an intensive care unit: a previously unrecognized nosocomial infection. Int J Dermatol 1999; 38:453.
  20. Rhie S, Turcios R, Buckley H, Suh B. Clinical features and treatment of Malassezia folliculitis with fluconazole in orthotopic heart transplant recipients. J Heart Lung Transplant 2000; 19:215.
  21. Schleman KA, Tullis G, Blum R. Intracardiac mass complicating Malassezia furfur fungemia. Chest 2000; 118:1828.
  22. Kessler AT, Kourtis AP, Simon N. Peripheral thromboembolism associated with Malassezia furfur sepsis. Pediatr Infect Dis J 2002; 21:356.
  23. Gidding H, Hawes L, Dwyer B. The isolation of Malassezia furfur from an episode of peritonitis. Med J Aust 1989; 151:603.
  24. Ascioglu S, Rex JH, de Pauw B, et al. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 2002; 34:7.
  25. Shparago NI, Bruno PP, Bennett J. Systemic Malassezia furfur infection in an adult receiving total parenteral nutrition. J Am Osteopath Assoc 1995; 95:375.
  26. Marcon MJ, Durrell DE, Powell DA, Buesching WJ. In vitro activity of systemic antifungal agents against Malassezia furfur. Antimicrob Agents Chemother 1987; 31:951.
  27. Sugita T, Tajima M, Ito T, et al. Antifungal activities of tacrolimus and azole agents against the eleven currently accepted Malassezia species. J Clin Microbiol 2005; 43:2824.
  28. Tragiannidis A, Bisping G, Koehler G, Groll AH. Minireview: Malassezia infections in immunocompromised patients. Mycoses 2010; 53:187.
  29. Marcon MJ, Powell DA. Human infections due to Malassezia spp. Clin Microbiol Rev 1992; 5:101.
  30. Hill MK, Goodfield MJ, Rodgers FG, et al. Skin surface electron microscopy in Pityrosporum folliculitis. The role of follicular occlusion in disease and the response to oral ketoconazole. Arch Dermatol 1990; 126:1071.
  31. Shemer A, Kaplan B, Nathansohn N, et al. Treatment of moderate to severe facial seborrheic dermatitis with itraconazole: an open non-comparative study. Isr Med Assoc J 2008; 10:417.