Smarter Decisions,
Better Care

UpToDate synthesizes the most recent medical information into evidence-based practical recommendations clinicians trust to make the right point-of-care decisions.

  • Rigorous editorial process: Evidence-based treatment recommendations
  • World-Renowned physician authors: over 5,100 physician authors and editors around the globe
  • Innovative technology: integrates into the workflow; access from EMRs

Choose from the list below to learn more about subscriptions for a:


Subscribers log in here


Left ventricular thrombus after acute myocardial infarction

INTRODUCTION

Left ventricular (LV) thrombus is one of the more common complications of myocardial infarction (MI). Thrombus development is important because it can lead to arterial embolic complications such as stroke. Patients with LV thrombus, or those at high risk, should receive anticoagulation for at least three months.

This topic will focus on the diagnosis of LV thrombus and the prevention of embolic complications. Other complications of MI such as arrhythmias, cardiogenic shock, and mechanical complications are discussed separately. (See "Clinical manifestations and diagnosis of cardiogenic shock in acute myocardial infarction" and "Clinical features and treatment of ventricular arrhythmias during acute myocardial infarction" and "Supraventricular arrhythmias after myocardial infarction" and "Conduction abnormalities after myocardial infarction" and "Mechanical complications of acute myocardial infarction".)

Other causes of arterial emboli are presented elsewhere. (See "Overview of acute arterial occlusion of the extremities (acute limb ischemia)", section on 'Arterial emboli'.)

EPIDEMIOLOGY AND RISK FACTORS

Formation — The likelihood of developing a left ventricular (LV) thrombus after an acute myocardial infarction (MI) varies with infarct location and size. LV thrombus is most often seen in patients with large anterior ST-elevation MI (STEMI) with anteroapical aneurysm formation; the incidence is lower with smaller infarctions and those involving other myocardial regions [1-11].

These anterior infarcts have large areas of poorly contracting LV muscle; adjacent intracavitary blood movement is sluggish compared to normal areas. This relative stasis of blood is thought to increase the risk of thrombus formation. An LV aneurysm and a mural thrombus have been identified in autopsy or surgery in more than 50 percent of these patients. Two factors contribute to clot formation in this setting: stasis of flow in the aneurysm cavity and contact of blood with the fibrous tissue in the aneurysm rather than normal endocardium. (See "Left ventricular aneurysm and pseudoaneurysm following acute myocardial infarction", section on 'Systemic embolization'.)

               

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Oct 2014. | This topic last updated: Mar 24, 2014.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
References
Top
  1. Visser CA, Kan G, Meltzer RS, et al. Embolic potential of left ventricular thrombus after myocardial infarction: a two-dimensional echocardiographic study of 119 patients. J Am Coll Cardiol 1985; 5:1276.
  2. Asinger RW, Mikell FL, Elsperger J, Hodges M. Incidence of left-ventricular thrombosis after acute transmural myocardial infarction. Serial evaluation by two-dimensional echocardiography. N Engl J Med 1981; 305:297.
  3. Nihoyannopoulos P, Smith GC, Maseri A, Foale RA. The natural history of left ventricular thrombus in myocardial infarction: a rationale in support of masterly inactivity. J Am Coll Cardiol 1989; 14:903.
  4. Küpper AJ, Verheugt FW, Peels CH, et al. Left ventricular thrombus incidence and behavior studied by serial two-dimensional echocardiography in acute anterior myocardial infarction: left ventricular wall motion, systemic embolism and oral anticoagulation. J Am Coll Cardiol 1989; 13:1514.
  5. Keren A, Goldberg S, Gottlieb S, et al. Natural history of left ventricular thrombi: their appearance and resolution in the posthospitalization period of acute myocardial infarction. J Am Coll Cardiol 1990; 15:790.
  6. Weinreich DJ, Burke JF, Pauletto FJ. Left ventricular mural thrombi complicating acute myocardial infarction. Long-term follow-up with serial echocardiography. Ann Intern Med 1984; 100:789.
  7. Vecchio C, Chiarella F, Lupi G, et al. Left ventricular thrombus in anterior acute myocardial infarction after thrombolysis. A GISSI-2 connected study. Circulation 1991; 84:512.
  8. Chiarella F, Santoro E, Domenicucci S, et al. Predischarge two-dimensional echocardiographic evaluation of left ventricular thrombosis after acute myocardial infarction in the GISSI-3 study. Am J Cardiol 1998; 81:822.
  9. Greaves SC, Zhi G, Lee RT, et al. Incidence and natural history of left ventricular thrombus following anterior wall acute myocardial infarction. Am J Cardiol 1997; 80:442.
  10. Nayak D, Aronow WS, Sukhija R, et al. Comparison of frequency of left ventricular thrombi in patients with anterior wall versus non-anterior wall acute myocardial infarction treated with antithrombotic and antiplatelet therapy with or without coronary revascularization. Am J Cardiol 2004; 93:1529.
  11. Nesković AN, Marinković J, Bojić M, Popović AD. Predictors of left ventricular thrombus formation and disappearance after anterior wall myocardial infarction. Eur Heart J 1998; 19:908.
  12. Rehan A, Kanwar M, Rosman H, et al. Incidence of post myocardial infarction left ventricular thrombus formation in the era of primary percutaneous intervention and glycoprotein IIb/IIIa inhibitors. A prospective observational study. Cardiovasc Ultrasound 2006; 4:20.
  13. Kalra A, Jang IK. Prevalence of early left ventricular thrombus after primary coronary intervention for acute myocardial infarction. J Thromb Thrombolysis 2000; 10:133.
  14. Gianstefani S, Douiri A, Delithanasis I, et al. Incidence and predictors of early left ventricular thrombus after ST-elevation myocardial infarction in the contemporary era of primary percutaneous coronary intervention. Am J Cardiol 2014; 113:1111.
  15. Stratton JR, Resnick AD. Increased embolic risk in patients with left ventricular thrombi. Circulation 1987; 75:1004.
  16. Vaitkus PT, Barnathan ES. Embolic potential, prevention and management of mural thrombus complicating anterior myocardial infarction: a meta-analysis. J Am Coll Cardiol 1993; 22:1004.
  17. Keating EC, Gross SA, Schlamowitz RA, et al. Mural thrombi in myocardial infarctions. Prospective evaluation by two-dimensional echocardiography. Am J Med 1983; 74:989.
  18. Cregler LL. Antithrombotic therapy in left ventricular thrombosis and systemic embolism. Am Heart J 1992; 123:1110.
  19. Meltzer RS, Visser CA, Fuster V. Intracardiac thrombi and systemic embolization. Ann Intern Med 1986; 104:689.
  20. Stratton JR, Lighty GW Jr, Pearlman AS, Ritchie JL. Detection of left ventricular thrombus by two-dimensional echocardiography: sensitivity, specificity, and causes of uncertainty. Circulation 1982; 66:156.
  21. Mansencal N, Nasr IA, Pillière R, et al. Usefulness of contrast echocardiography for assessment of left ventricular thrombus after acute myocardial infarction. Am J Cardiol 2007; 99:1667.
  22. Weinsaft JW, Kim RJ, Ross M, et al. Contrast-enhanced anatomic imaging as compared to contrast-enhanced tissue characterization for detection of left ventricular thrombus. JACC Cardiovasc Imaging 2009; 2:969.
  23. American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance Endorsed by the American College of Chest Physicians. J Am Coll Cardiol 2011; 57:1126.
  24. Srichai MB, Junor C, Rodriguez LL, et al. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J 2006; 152:75.
  25. Mollet NR, Dymarkowski S, Volders W, et al. Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation 2002; 106:2873.
  26. Barkhausen J, Hunold P, Eggebrecht H, et al. Detection and characterization of intracardiac thrombi on MR imaging. AJR Am J Roentgenol 2002; 179:1539.
  27. Turpie AG, Robinson JG, Doyle DJ, et al. Comparison of high-dose with low-dose subcutaneous heparin to prevent left ventricular mural thrombosis in patients with acute transmural anterior myocardial infarction. N Engl J Med 1989; 320:352.
  28. Kontny F, Dale J, Abildgaard U, Pedersen TR. Randomized trial of low molecular weight heparin (dalteparin) in prevention of left ventricular thrombus formation and arterial embolism after acute anterior myocardial infarction: the Fragmin in Acute Myocardial Infarction (FRAMI) Study. J Am Coll Cardiol 1997; 30:962.
  29. Nordrehaug JE, Johannessen KA, von der Lippe G. Usefulness of high-dose anticoagulants in preventing left ventricular thrombus in acute myocardial infarction. Am J Cardiol 1985; 55:1491.
  30. Heik SC, Kupper W, Hamm C, et al. Efficacy of high dose intravenous heparin for treatment of left ventricular thrombi with high embolic risk. J Am Coll Cardiol 1994; 24:1305.
  31. Vandvik PO, Lincoff AM, Gore JM, et al. Primary and secondary prevention of cardiovascular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141:e637S.
  32. O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 127:529.
  33. O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 127:e362.
  34. Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014; 45:2160.