UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®

Initial approach to low- and very low-risk clinically localized prostate cancer

Authors
Eric A Klein, MD
Jay P Ciezki, MD
Section Editors
Nicholas Vogelzang, MD
W Robert Lee, MD, MS, MEd
Jerome P Richie, MD, FACS
Deputy Editor
Michael E Ross, MD

INTRODUCTION

Most prostate cancers now are diagnosed while clinically localized, based in part upon the widespread use of serum prostate specific antigen (PSA) measurement. Treatment planning needs to incorporate the natural history of the disease and the risk of progression, since many of these cancers are biologically indolent and may never threaten the health or life of the patient.

For patients diagnosed with prostate cancer confined to the prostate, standard management options include radical prostatectomy, radiation therapy (external beam, brachytherapy), and, for carefully selected patients with very low or low-risk disease, active surveillance.

Key factors in choosing treatment for a man with low-risk prostate cancer include the likelihood of recurrence or metastasis following treatment (risk stratification), the patient's age and life expectancy, the presence or absence of significant comorbidity, and patient preferences. (See "Prostate cancer: Risk stratification and choice of initial treatment", section on 'Risk stratification'.)

This topic discusses the initial management approach for men with low-risk prostate cancer. The approach to treatment of men with intermediate and high-risk prostate cancer, locally advanced (very high risk) disease, and stage IV disease (clinical lymph node involvement or disseminated metastases) are discussed separately:

(See "Initial management of regionally localized intermediate, high, and very high-risk prostate cancer".)

                              

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Nov 2016. | This topic last updated: Tue Oct 25 00:00:00 GMT+00:00 2016.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
References
Top
  1. National Comprehensive Cancer Network (NCCN). NCCN Clinical practice guidelines in oncology. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp (Accessed on February 27, 2016).
  2. Dahabreh IJ, Chung M, Balk EM, et al. Active Surveillance in Men With Localized Prostate Cancer: A Systematic Review. Ann Intern Med 2012.
  3. Sheets NC, Goldin GH, Meyer AM, et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA 2012; 307:1611.
  4. Sanda MG, Dunn RL, Michalski J, et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 2008; 358:1250.
  5. Nag S, Beyer D, Friedland J, et al. American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer. Int J Radiat Oncol Biol Phys 1999; 44:789.
  6. Thompson I, Thrasher JB, Aus G, et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol 2007; 177:2106.
  7. Kittel JA, Reddy CA, Smith KL, et al. Long-Term Efficacy and Toxicity of Low-Dose-Rate ¹²⁵I Prostate Brachytherapy as Monotherapy in Low-, Intermediate-, and High-Risk Prostate Cancer. Int J Radiat Oncol Biol Phys 2015; 92:884.
  8. Cookson MS, Aus G, Burnett AL, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol 2007; 177:540.
  9. Kawakami J, Cowan JE, Elkin EP, et al. Androgen-deprivation therapy as primary treatment for localized prostate cancer: data from Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE). Cancer 2006; 106:1708.
  10. Sammon JD, Abdollah F, Reznor G, et al. Patterns of Declining Use and the Adverse Effect of Primary Androgen Deprivation on All-cause Mortality in Elderly Men with Prostate Cancer. Eur Urol 2015; 68:32.
  11. Cullen J, Zhao J, Chen Y, et al. Overall survival among prostate cancer patients treated with primary androgen deprivation therapy versus expectant management (abstract). Data presented at the 3rd annual ASCO Prostate Cancer Symposium, Orlando, Florida, February 22-24, 2007.
  12. et al. Antiandrogen monotherapy in patients with localized or locally advanced prostate cancer: final results from the bicalutamide Early Prostate Cancer programmer at a median follow-up of 9. 7 years. BJUI 2010; 105:1074.
  13. Hamdy FC, Donovan JL, Lane JA, et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med 2016; 375:1415.
  14. Donovan JL, Hamdy FC, Lane JA, et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med 2106.
  15. Boorjian SA, Karnes RJ, Rangel LJ, et al. Mayo Clinic validation of the D'amico risk group classification for predicting survival following radical prostatectomy. J Urol 2008; 179:1354.
  16. Eggener SE, Scardino PT, Walsh PC, et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J Urol 2011; 185:869.
  17. Mullins JK, Feng Z, Trock BJ, et al. The impact of anatomical radical retropubic prostatectomy on cancer control: the 30-year anniversary. J Urol 2012; 188:2219.
  18. Moschini M, Sharma V, Zattoni F, et al. Natural History of Clinical Recurrence Patterns of Lymph Node-Positive Prostate Cancer After Radical Prostatectomy. Eur Urol 2016; 69:135.
  19. Zelefsky MJ, Yamada Y, Fuks Z, et al. Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. Int J Radiat Oncol Biol Phys 2008; 71:1028.
  20. Zelefsky MJ, Kuban DA, Levy LB, et al. Multi-institutional analysis of long-term outcome for stages T1-T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys 2007; 67:327.
  21. Hauswald H, Kamrava MR, Fallon JM, et al. High-Dose-Rate Monotherapy for Localized Prostate Cancer: 10-Year Results. Int J Radiat Oncol Biol Phys 2016; 94:667.
  22. Jarosek SL, Virnig BA, Chu H, Elliott SP. Propensity-weighted long-term risk of urinary adverse events after prostate cancer surgery, radiation, or both. Eur Urol 2015; 67:273.
  23. Laviana AA, Ilg AM, Veruttipong D, et al. Utilizing time-driven activity-based costing to understand the short- and long-term costs of treating localized, low-risk prostate cancer. Cancer 2016; 122:447.
  24. Wiegel T, Stöckle M, Bartkowiak D. PREFEREnce-based randomized evaluation of treatment modalities in low or early intermediate-risk prostate cancer. Eur Urol 2015; 67:1.