Induction immunosuppressive therapy in renal transplantation in adults

INTRODUCTION

In general, induction immunosuppressive strategies utilized by kidney transplant centers fall into one of two categories (table 1). One strategy relies upon high doses of conventional immunosuppressive agents, while the other utilizes antibodies directed against T-cell antigens in combination with lower doses of conventional agents.

The optimal prophylactic induction immunosuppressive therapy to prevent kidney transplant rejection remains controversial [1,2]. What follows in this topic review is a summary of the current data and our approach to induction therapy in adults. Maintenance immunosuppressive therapy is discussed separately. (See "Maintenance immunosuppressive therapy in renal transplantation in adults".)

OVERVIEW OF OUR APPROACH TO INDUCTION THERAPY

Practically all kidney allograft recipients require immunosuppressive therapy to prevent rejection and loss of the allograft. The optimal regimen, including induction therapy, is not clear. A large number of controlled randomized trials and meta-analyses indicate that induction therapy consisting of biologic antibodies plus conventional immunosuppressive agent therapy is superior to conventional agent therapy alone in reducing kidney allograft rejection and allograft failure [3-5].

Among patients undergoing kidney transplantation, we therefore recommend induction therapy consisting of antibody therapy plus conventional immunosuppressive therapy. One exception is Caucasian recipients of two haplotype-identical, living, related allografts. Such patients do not generally require induction therapy with antibodies given their markedly decreased immunologic risk of acute rejection.

Immunosuppressive antibody therapy — Currently available antibodies include the following specific antilymphocyte or interleukin-2 (IL-2) receptor antibodies [5-7]:

             

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Aug 2014. | This topic last updated: Apr 9, 2014.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
References
Top
  1. Kahan BD. Individuality: the barrier to optimal immunosuppression. Nat Rev Immunol 2003; 3:831.
  2. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009; 9 Suppl 3:S1.
  3. Webster AC, Playford EG, Higgins G, et al. Interleukin 2 receptor antagonists for renal transplant recipients: a meta-analysis of randomized trials. Transplantation 2004; 77:166.
  4. Szczech LA, Berlin JA, Aradhye S, et al. Effect of anti-lymphocyte induction therapy on renal allograft survival: a meta-analysis. J Am Soc Nephrol 1997; 8:1771.
  5. Szczech LA, Berlin JA, Feldman HI. The effect of antilymphocyte induction therapy on renal allograft survival. A meta-analysis of individual patient-level data. Anti-Lymphocyte Antibody Induction Therapy Study Group. Ann Intern Med 1998; 128:817.
  6. Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 1998; 338:161.
  7. Starzl TE, Murase N, Abu-Elmagd K, et al. Tolerogenic immunosuppression for organ transplantation. Lancet 2003; 361:1502.
  8. Kirk AD. Induction immunosuppression. Transplantation 2006; 82:593.
  9. Webster AC, Ruster LP, McGee R, et al. Interleukin 2 receptor antagonists for kidney transplant recipients. Cochrane Database Syst Rev 2010; :CD003897.
  10. Brennan DC, Daller JA, Lake KD, et al. Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med 2006; 355:1967.
  11. Hardinger KL, Brennan DC, Schnitzler MA. Rabbit antithymocyte globulin is more beneficial in standard kidney than in extended donor recipients. Transplantation 2009; 87:1372.
  12. Miller JT, Collins CD, Stuckey LJ, et al. Clinical and economic outcomes of rabbit antithymocyte globulin induction in adults who received kidney transplants from living unrelated donors and received cyclosporine-based immunosuppression. Pharmacotherapy 2009; 29:1166.
  13. Wiland AM, Fink JC, Weir MR, et al. Should living-unrelated renal transplant recipients receive antibody induction? Results of a clinical experience trial. Transplantation 2004; 77:422.
  14. Bonnefoy-Bérard N, Vincent C, Revillard JP. Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins. Transplantation 1991; 51:669.
  15. Bourdage JS, Hamlin DM. Comparative polyclonal antithymocyte globulin and antilymphocyte/antilymphoblast globulin anti-CD antigen analysis by flow cytometry. Transplantation 1995; 59:1194.
  16. Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of Thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 1999; 67:1011.
  17. Hardinger KL, Schnitzler MA, Miller B, et al. Five-year follow up of thymoglobulin versus ATGAM induction in adult renal transplantation. Transplantation 2004; 78:136.
  18. Hardinger KL, Rhee S, Buchanan P, et al. A prospective, randomized, double-blinded comparison of thymoglobulin versus Atgam for induction immunosuppressive therapy: 10-year results. Transplantation 2008; 86:947.
  19. Benvenisty AI, Tannenbaum GA, Cohen DJ, et al. Use of antithymocyte globulin and cyclosporine to treat steroid-resistant rejection episodes in renal transplant recipients. Transplant Proc 1987; 19:1889.
  20. O'Donoghue DJ, Johnson RW, Mallick NP, et al. Rabbit anti-thymocyte globulin treatment of steroid resistant rejection in renal allograft recipients immunosuppressed with cyclosporine A. Transplant Proc 1989; 21:1736.
  21. Filo RS, Smith EJ, Leapman SB. Reversal of acute renal allograft rejection with adjunctive AG therapy. Transplant Proc 1981; 13:482.
  22. Gaber AO, First MR, Tesi RJ, et al. Results of the double-blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus Atgam in the treatment of acute graft rejection episodes after renal transplantation. Transplantation 1998; 66:29.
  23. Hardinger KL, Schnitzler MA, Koch MJ, et al. Thymoglobulin induction is safe and effective in live-donor renal transplantation: a single center experience. Transplantation 2006; 81:1285.
  24. Agha IA, Rueda J, Alvarez A, et al. Short course induction immunosuppression with thymoglobulin for renal transplant recipients. Transplantation 2002; 73:473.
  25. Shapiro R, Jordan ML, Basu A, et al. Kidney transplantation under a tolerogenic regimen of recipient pretreatment and low-dose postoperative immunosuppression with subsequent weaning. Ann Surg 2003; 238:520.
  26. Goggins WC, Pascual MA, Powelson JA, et al. A prospective, randomized, clinical trial of intraoperative versus postoperative Thymoglobulin in adult cadaveric renal transplant recipients. Transplantation 2003; 76:798.
  27. Ruggenenti P, Codreanu I, Cravedi P, et al. Basiliximab combined with low-dose rabbit anti-human thymocyte globulin: a possible further step toward effective and minimally toxic T cell-targeted therapy in kidney transplantation. Clin J Am Soc Nephrol 2006; 1:546.
  28. Peddi VR, Bryant M, Roy-Chaudhury P, et al. Safety, efficacy, and cost analysis of thymoglobulin induction therapy with intermittent dosing based on CD3+ lymphocyte counts in kidney and kidney-pancreas transplant recipients. Transplantation 2002; 73:1514.
  29. Stratta RJ, Sundberg AK, Farney AC, et al. Experience with alternate-day thymoglobulin induction in pancreas transplantation with portal-enteric drainage. Transplant Proc 2005; 37:3546.
  30. Wong W, Agrawal N, Pascual M, et al. Comparison of two dosages of thymoglobulin used as a short-course for induction in kidney transplantation. Transpl Int 2006; 19:629.
  31. Gurk-Turner C, Airee R, Philosophe B, et al. Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. Transplantation 2008; 85:1425.
  32. Stevens RB, Mercer DF, Grant WJ, et al. Randomized trial of single-dose versus divided-dose rabbit anti-thymocyte globulin induction in renal transplantation: an interim report. Transplantation 2008; 85:1391.
  33. Préville X, Flacher M, LeMauff B, et al. Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation 2001; 71:460.
  34. Brennan DC, Schnitzler MA. Long-term results of rabbit antithymocyte globulin and basiliximab induction. N Engl J Med 2008; 359:1736.
  35. Knight RJ, Kerman RH, Schoenberg L, et al. The selective use of basiliximab versus thymoglobulin in combination with sirolimus for cadaveric renal transplant recipients at low risk versus high risk for delayed graft function. Transplantation 2004; 78:904.
  36. Mourad G, Rostaing L, Legendre C, et al. Sequential protocols using basiliximab versus antithymocyte globulins in renal-transplant patients receiving mycophenolate mofetil and steroids. Transplantation 2004; 78:584.
  37. Willoughby LM, Schnitzler MA, Brennan DC, et al. Early outcomes of thymoglobulin and basiliximab induction in kidney transplantation: application of statistical approaches to reduce bias in observational comparisons. Transplantation 2009; 87:1520.
  38. Haririan A, Morawski K, Sillix DH, et al. Induction therapy with basiliximab versus Thymoglobulin in African-American kidney transplant recipients. Transplantation 2005; 79:716.
  39. Novartis October 6, 2000 "Dear Healthcare Provider" letter.
  40. Brokhof MM, Sollinger HW, Hager DR, et al. Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibodies in moderately sensitized renal transplant recipients. Transplantation 2014; 97:612.
  41. Calne R, Moffatt SD, Friend PJ, et al. Campath IH allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients. Transplantation 1999; 68:1613.
  42. Kirk AD, Hale DA, Mannon RB, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 2003; 76:120.
  43. Tan HP, Kaczorowski DJ, Basu A, et al. Living-related donor renal transplantation in HIV+ recipients using alemtuzumab preconditioning and steroid-free tacrolimus monotherapy: a single center preliminary experience. Transplantation 2004; 78:1683.
  44. Watson CJ, Bradley JA, Friend PJ, et al. Alemtuzumab (CAMPATH 1H) induction therapy in cadaveric kidney transplantation--efficacy and safety at five years. Am J Transplant 2005; 5:1347.
  45. Vathsala A, Ona ET, Tan SY, et al. Randomized trial of Alemtuzumab for prevention of graft rejection and preservation of renal function after kidney transplantation. Transplantation 2005; 80:765.
  46. Ciancio G, Burke GW, Gaynor JJ, et al. A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. Transplantation 2005; 80:457.
  47. Morris PJ, Russell NK. Alemtuzumab (Campath-1H): a systematic review in organ transplantation. Transplantation 2006; 81:1361.
  48. Knechtle SJ, Fernandez LA, Pirsch JD, et al. Campath-1H in renal transplantation: The University of Wisconsin experience. Surgery 2004; 136:754.
  49. Shapiro R, Basu A, Tan H, et al. Kidney transplantation under minimal immunosuppression after pretransplant lymphoid depletion with Thymoglobulin or Campath. J Am Coll Surg 2005; 200:505.
  50. Kaufman DB, Leventhal JR, Axelrod D, et al. Alemtuzumab induction and prednisone-free maintenance immunotherapy in kidney transplantation: comparison with basiliximab induction--long-term results. Am J Transplant 2005; 5:2539.
  51. Ciancio G, Burke GW, Gaynor JJ, et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. Transplantation 2004; 78:426.
  52. Tan HP, Kaczorowski DJ, Basu A, et al. Living donor renal transplantation using alemtuzumab induction and tacrolimus monotherapy. Am J Transplant 2006; 6:2409.
  53. Ciancio G, Burke GW 3rd. Alemtuzumab (Campath-1H) in kidney transplantation. Am J Transplant 2008; 8:15.
  54. Ciancio G, Burke GW, Gaynor JJ, et al. Campath-1H induction therapy in African American and Hispanic first renal transplant recipients: 3-year actuarial follow-up. Transplantation 2008; 85:507.
  55. Ortiz J, Palma-Vargas J, Wright F, et al. Campath induction for kidney transplantation: report of 297 cases. Transplantation 2008; 85:1550.
  56. Tan HP, Donaldson J, Basu A, et al. Two hundred living donor kidney transplantations under alemtuzumab induction and tacrolimus monotherapy: 3-year follow-up. Am J Transplant 2009; 9:355.
  57. Pascual J, Mezrich JD, Djamali A, et al. Alemtuzumab induction and recurrence of glomerular disease after kidney transplantation. Transplantation 2007; 83:1429.
  58. Hanaway MJ, Woodle ES, Mulgaonkar S, et al. Alemtuzumab induction in renal transplantation. N Engl J Med 2011; 364:1909.
  59. Ciancio G, Burke GW, Gaynor JJ, et al. A randomized trial of thymoglobulin vs. alemtuzumab (with lower dose maintenance immunosuppression) vs. daclizumab in renal transplantation at 24 months of follow-up. Clin Transplant 2008; 22:200.
  60. Farney A, Sundberg A, Moore P, et al. A randomized trial of alemtuzumab vs. anti-thymocyte globulin induction in renal and pancreas transplantation. Clin Transplant 2008; 22:41.
  61. Farney AC, Doares W, Rogers J, et al. A randomized trial of alemtuzumab versus antithymocyte globulin induction in renal and pancreas transplantation. Transplantation 2009; 88:810.
  62. Haider I, Cahill M. Fatal thrombocytopaenia temporally related to the administration of alemtuzumab (MabCampath) for refractory CLL despite early discontinuation of therapy. Hematology 2004; 9:409.
  63. Kirk AD, Hale DA, Swanson SJ, Mannon RB. Autoimmune thyroid disease after renal transplantation using depletional induction with alemtuzumab. Am J Transplant 2006; 6:1084.
  64. Pearl JP, Parris J, Hale DA, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant 2005; 5:465.
  65. Tydén G, Genberg H, Tollemar J, et al. A randomized, doubleblind, placebo-controlled, study of single-dose rituximab as induction in renal transplantation. Transplantation 2009; 87:1325.
  66. Tydén G, Ekberg H, Tufveson G, Mjörnstedt L. A randomized, double-blind, placebo-controlled study of single dose rituximab as induction in renal transplantation: a 3-year follow-up. Transplantation 2012; 94:e21.
  67. Kyaw T, Tay C, Krishnamurthi S, et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ Res 2011; 109:830.
  68. Tan J, Wu W, Xu X, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 2012; 307:1169.
  69. Meier-Kriesche HU, Li S, Gruessner RW, et al. Immunosuppression: evolution in practice and trends, 1994-2004. Am J Transplant 2006; 6:1111.
  70. www.ustransplant.org (Accessed on January 10, 2010).