Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Hydroxyurea use in sickle cell disease

Griffin P Rodgers, MD
Alex George, MD, PhD
Section Editors
Stanley L Schrier, MD
Donald H Mahoney, Jr, MD
Deputy Editor
Jennifer S Tirnauer, MD


The major causes of morbidity and mortality in sickle cell disease (SCD) are the acute and long-term consequences of vasoocclusion and hemolysis, many of which cannot be reversed (eg, tissue infarction, vasculopathy). The approaches that are available for reducing these pathophysiologic processes are regular red blood cell (RBC) transfusions, hydroxyurea therapy, and hematopoietic cell transplantation (HCT).

This topic review discusses hydroxyurea therapy in SCD, including the mechanism of action, administration, dosing, and adverse effects. Separate topic reviews present overviews of SCD clinical manifestations and management, and the use of regular RBC transfusions and HCT in SCD:

Clinical manifestations overview – (See "Overview of the clinical manifestations of sickle cell disease".)

Management overview – (See "Overview of the management and prognosis of sickle cell disease".)

Routine care for children – (See "Routine comprehensive care for children with sickle cell disease".)


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Apr 2017. | This topic last updated: Apr 07, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. McGann PT, Ware RE. Hydroxyurea therapy for sickle cell anemia. Expert Opin Drug Saf 2015; 14:1749.
  2. Singh A, Xu YJ. The Cell Killing Mechanisms of Hydroxyurea. Genes (Basel) 2016; 7.
  3. Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet 2017.
  4. Platt OS. Hydroxyurea for the treatment of sickle cell anemia. N Engl J Med 2008; 358:1362.
  5. Goldberg MA, Brugnara C, Dover GJ, et al. Treatment of sickle cell anemia with hydroxyurea and erythropoietin. N Engl J Med 1990; 323:366.
  6. Franco RS, Yasin Z, Palascak MB, et al. The effect of fetal hemoglobin on the survival characteristics of sickle cells. Blood 2006; 108:1073.
  7. Setty BN, Kulkarni S, Dampier CD, Stuart MJ. Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood 2001; 97:2568.
  8. Ballas SK, Dover GJ, Charache S. Effect of hydroxyurea on the rheological properties of sickle erythrocytes in vivo. Am J Hematol 1989; 32:104.
  9. Rodgers GP, Dover GJ, Noguchi CT, et al. Hematologic responses of patients with sickle cell disease to treatment with hydroxyurea. N Engl J Med 1990; 322:1037.
  10. Perrine RP, Pembrey ME, John P, et al. Natural history of sickle cell anemia in Saudi Arabs. A study of 270 subjects. Ann Intern Med 1978; 88:1.
  11. Wood WG, Pembrey ME, Serjeant GR, et al. Hb F synthesis in sickle cell anaemia: a comparison of Saudi Arab cases with those of African origin. Br J Haematol 1980; 45:431.
  12. Brittenham G, Lozoff B, Harris JW, et al. Sickle cell anemia and trait in southern India: further studies. Am J Hematol 1979; 6:107.
  13. Diop S, Thiam D, Cisse M, et al. New results in clinical severity of homozygous sickle cell anemia, in Dakar, Senegal. Hematol Cell Ther 1999; 41:217.
  14. Fabry ME, Suzuka SM, Weinberg RS, et al. Second generation knockout sickle mice: the effect of HbF. Blood 2001; 97:410.
  15. Pule GD, Mowla S, Novitzky N, et al. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease. Expert Rev Hematol 2015; 8:669.
  16. Cokic VP, Smith RD, Beleslin-Cokic BB, et al. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest 2003; 111:231.
  17. Costa FC, da Cunha AF, Fattori A, et al. Gene expression profiles of erythroid precursors characterise several mechanisms of the action of hydroxycarbamide in sickle cell anaemia. Br J Haematol 2007; 136:333.
  18. Flanagan JM, Steward S, Howard TA, et al. Hydroxycarbamide alters erythroid gene expression in children with sickle cell anaemia. Br J Haematol 2012; 157:240.
  19. Zhu J, Chin K, Aerbajinai W, et al. Hydroxyurea-inducible SAR1 gene acts through the Giα/JNK/Jun pathway to regulate γ-globin expression. Blood 2014; 124:1146.
  20. Green NS. A step forward back to (induced) fetal. Blood 2014; 124:993.
  21. Xu J, Zimmer DB. Differential regulation of A gamma and G gamma fetal hemoglobin mRNA levels by hydroxyurea and butyrate. Exp Hematol 1998; 26:265.
  22. Gladwin MT, Shelhamer JH, Ognibene FP, et al. Nitric oxide donor properties of hydroxyurea in patients with sickle cell disease. Br J Haematol 2002; 116:436.
  23. Nahavandi M, Tavakkoli F, Wyche MQ, et al. Nitric oxide and cyclic GMP levels in sickle cell patients receiving hydroxyurea. Br J Haematol 2002; 119:855.
  24. Iyamu EW, Cecil R, Parkin L, et al. Modulation of erythrocyte arginase activity in sickle cell disease patients during hydroxyurea therapy. Br J Haematol 2005; 131:389.
  25. Cokic VP, Beleslin-Cokic BB, Tomic M, et al. Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood 2006; 108:184.
  26. Westerman M, Pizzey A, Hirschman J, et al. Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy. Br J Haematol 2008; 142:126.
  27. Bridges KR, Barabino GD, Brugnara C, et al. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood 1996; 88:4701.
  28. Hillery CA, Du MC, Wang WC, Scott JP. Hydroxyurea therapy decreases the in vitro adhesion of sickle erythrocytes to thrombospondin and laminin. Br J Haematol 2000; 109:322.
  29. Bartolucci P, Chaar V, Picot J, et al. Decreased sickle red blood cell adhesion to laminin by hydroxyurea is associated with inhibition of Lu/BCAM protein phosphorylation. Blood 2010; 116:2152.
  30. Orringer EP, Blythe DS, Johnson AE, et al. Effects of hydroxyurea on hemoglobin F and water content in the red blood cells of dogs and of patients with sickle cell anemia. Blood 1991; 78:212.
  31. Steinberg MH, Nagel RL, Brugnara C. Cellular effects of hydroxyurea in Hb SC disease. Br J Haematol 1997; 98:838.
  32. Ware RE. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood 2010; 115:5300.
  33. Kasschau MR, Barabino GA, Bridges KR, Golan DE. Adhesion of sickle neutrophils and erythrocytes to fibronectin. Blood 1996; 87:771.
  34. Benkerrou M, Delarche C, Brahimi L, et al. Hydroxyurea corrects the dysregulated L-selectin expression and increased H(2)O(2) production of polymorphonuclear neutrophils from patients with sickle cell anemia. Blood 2002; 99:2297.
  35. Charache S, Barton FB, Moore RD, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive "switching" agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine (Baltimore) 1996; 75:300.
  36. Ware RE, Eggleston B, Redding-Lallinger R, et al. Predictors of fetal hemoglobin response in children with sickle cell anemia receiving hydroxyurea therapy. Blood 2002; 99:10.
  37. Yates AM, Dedeken L, Smeltzer MP, et al. Hydroxyurea treatment of children with hemoglobin SC disease. Pediatr Blood Cancer 2013; 60:323.
  38. Luchtman-Jones L, Pressel S, Hilliard L, et al. Effects of hydroxyurea treatment for patients with hemoglobin SC disease. Am J Hematol 2016; 91:238.
  39. Brawley OW, Cornelius LJ, Edwards LR, et al. National Institutes of Health Consensus Development Conference statement: hydroxyurea treatment for sickle cell disease. Ann Intern Med 2008; 148:932.
  40. Wong TE, Brandow AM, Lim W, Lottenberg R. Update on the use of hydroxyurea therapy in sickle cell disease. Blood 2014; 124:3850.
  41. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 2014; 312:1033.
  42. Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA 2003; 289:1645.
  43. Steinberg MH, McCarthy WF, Castro O, et al. The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: A 17.5 year follow-up. Am J Hematol 2010; 85:403.
  44. Voskaridou E, Christoulas D, Bilalis A, et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood 2010; 115:2354.
  45. Lobo CL, Pinto JF, Nascimento EM, et al. The effect of hydroxcarbamide therapy on survival of children with sickle cell disease. Br J Haematol 2013; 161:852.
  46. Lanzkron S, Strouse JJ, Wilson R, et al. Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease. Ann Intern Med 2008; 148:939.
  47. Strouse JJ, Lanzkron S, Beach MC, et al. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics 2008; 122:1332.
  48. Wang WC, Ware RE, Miller ST, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 2011; 377:1663.
  49. Thornburg CD, Files BA, Luo Z, et al. Impact of hydroxyurea on clinical events in the BABY HUG trial. Blood 2012; 120:4304.
  50. Wang WC, Wynn LW, Rogers ZR, et al. A two-year pilot trial of hydroxyurea in very young children with sickle-cell anemia. J Pediatr 2001; 139:790.
  51. Ferster A, Tahriri P, Vermylen C, et al. Five years of experience with hydroxyurea in children and young adults with sickle cell disease. Blood 2001; 97:3628.
  52. Gulbis B, Haberman D, Dufour D, et al. Hydroxyurea for sickle cell disease in children and for prevention of cerebrovascular events: the Belgian experience. Blood 2005; 105:2685.
  53. Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 1995; 332:1317.
  54. Wang W, Brugnara C, Snyder C, et al. The effects of hydroxycarbamide and magnesium on haemoglobin SC disease: results of the multi-centre CHAMPS trial. Br J Haematol 2011; 152:771.
  55. Thornburg CD, Calatroni A, Panepinto JA. Differences in health-related quality of life in children with sickle cell disease receiving hydroxyurea. J Pediatr Hematol Oncol 2011; 33:251.
  56. Moore RD, Charache S, Terrin ML, et al. Cost-effectiveness of hydroxyurea in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Am J Hematol 2000; 64:26.
  57. Wang WC, Oyeku SO, Luo Z, et al. Hydroxyurea is associated with lower costs of care of young children with sickle cell anemia. Pediatrics 2013; 132:677.
  58. Kinney TR, Helms RW, O'Branski EE, et al. Safety of hydroxyurea in children with sickle cell anemia: results of the HUG-KIDS study, a phase I/II trial. Pediatric Hydroxyurea Group. Blood 1999; 94:1550.
  59. Heeney MM, Whorton MR, Howard TA, et al. Chemical and functional analysis of hydroxyurea oral solutions. J Pediatr Hematol Oncol 2004; 26:179.
  60. Steinberg MH. Sickle cell disease and hydroxyurea: the good, the bad, and the future (editorial). Blood 2005; 105:441.
  61. Zumberg MS, Reddy S, Boyette RL, et al. Hydroxyurea therapy for sickle cell disease in community-based practices: a survey of Florida and North Carolina hematologists/oncologists. Am J Hematol 2005; 79:107.
  62. Candrilli SD, O'Brien SH, Ware RE, et al. Hydroxyurea adherence and associated outcomes among Medicaid enrollees with sickle cell disease. Am J Hematol 2011; 86:273.
  63. Haywood C Jr, Beach MC, Bediako S, et al. Examining the characteristics and beliefs of hydroxyurea users and nonusers among adults with sickle cell disease. Am J Hematol 2011; 86:85.
  64. Stettler N, McKiernan CM, Melin CQ, et al. Proportion of adults with sickle cell anemia and pain crises receiving hydroxyurea. JAMA 2015; 313:1671.
  65. Brandow AM, Panepinto JA. Hydroxyurea use in sickle cell disease: the battle with low prescription rates, poor patient compliance and fears of toxicities. Expert Rev Hematol 2010; 3:255.
  66. Hankins JS, Ware RE, Rogers ZR, et al. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood 2005; 106:2269.
  67. https://www.abbottpointofcare.com/download?docUri=/technical-library/static-assets/technical-documentation/714183-00Y.pdf (Accessed on November 04, 2016).
  68. Ballas SK, McCarthy WF, Guo N, et al. Exposure to hydroxyurea and pregnancy outcomes in patients with sickle cell anemia. J Natl Med Assoc 2009; 101:1046.
  69. Rana S, Houston PE, Wang WC, et al. Hydroxyurea and growth in young children with sickle cell disease. Pediatrics 2014; 134:465.
  70. DeBaun MR. Hydroxyurea therapy contributes to infertility in adult men with sickle cell disease: a review. Expert Rev Hematol 2014; 7:767.
  71. Zimmerman SA, Schultz WH, Davis JS, et al. Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood 2004; 103:2039.
  72. McGann PT, Howard TA, Flanagan JM, et al. Chromosome damage and repair in children with sickle cell anaemia and long-term hydroxycarbamide exposure. Br J Haematol 2011; 154:134.