Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Hereditary elliptocytosis: Genetics and pathogenesis

William C Mentzer, MD
Section Editors
Donald H Mahoney, Jr, MD
Stanley L Schrier, MD
Benjamin A Raby, MD, MPH
Deputy Editor
Jennifer S Tirnauer, MD


Hereditary elliptocytosis (HE) is a heterogeneous group of inherited erythrocyte disorders that have in common the presence of elongated, oval, or elliptically shaped red blood cells (RBCs) on the peripheral blood smear (picture 1). Most forms of HE are transmitted as an autosomal dominant trait with the major exception of hereditary pyropoikilocytosis, which may be transmitted in an autosomal recessive fashion. The molecular biology, pathophysiology, and possible role in resistance to malaria will be reviewed here. The clinical features, diagnosis, and treatment of this disease are discussed separately. (See "Hereditary elliptocytosis: Clinical features, diagnosis, and treatment".)


The resistance and elastic deformability of red blood cells (RBCs) are due to a cytoskeleton that laminates the lipid bilayer and to proteins that provide vertical association of the cytoskeleton with the bilayer. Five interconnected proteins are involved in the coupling of the cytoskeleton to the lipid bilayer (figure 1). (See "Red blood cell membrane dynamics and organization".)

Spectrin (composed of alpha, beta heterodimers)


Band 4.2 (previously called pallidin)


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: May 2017. | This topic last updated: Aug 25, 2016.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Lux SE, Palek J. Disorders of the red cell membrane. In: Blood. Principles and Practice of Hematology, Handin RI, Lux SE, Stossel TP (Eds), Lippincott, Philadelphia 1995. p.1701.
  2. Gallagher PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol 2004; 41:142.
  3. Maillet P, Alloisio N, Morlé L, Delaunay J. Spectrin mutations in hereditary elliptocytosis and hereditary spherocytosis. Hum Mutat 1996; 8:97.
  4. An X, Mohandas N. Disorders of red cell membrane. Br J Haematol 2008; 141:367.
  5. Palek J, Jarolim P. ereditary spherocytosis, elliptocytosis, and related disorders. In: Williams' Hematology, 5th ed, Beutler E, Lichtman MA, Coller BS, Kipps TJ (Eds), McGraw-Hill, New York 1995. p.536.
  6. Grace RF, Lux S. Disorders of the red cell membrane. In: Hematology of Infancy and Childhood, 7th ed, Orkin SH, Nathan DG, Ginsburg D, et al. (Eds), Saunders, Philadelphia 2009. p.659.
  7. Lorenzo F, Dalla Venezia N, Morlé L, et al. Protein 4.1 deficiency associated with an altered binding to the spectrin-actin complex of the red cell membrane skeleton. J Clin Invest 1994; 94:1651.
  8. Perrotta S, Iolascon A, De Angelis F, et al. Spectrin Anastasia (alpha I/78): a new spectrin variant (alpha 45 Arg-->Thr) with moderate elliptocytogenic potential. Br J Haematol 1995; 89:933.
  9. Parquet N, Devaux I, Boulanger L, et al. Identification of three novel spectrin alpha I/74 mutations in hereditary elliptocytosis: further support for a triple-stranded folding unit model of the spectrin heterodimer contact site. Blood 1994; 84:303.
  10. Lecomte MC, Feo C, Gautero H, et al. Severe recessive poikilocytic anaemia with a new spectrin alpha chain variant. Br J Haematol 1990; 74:497.
  11. Alloisio N, Wilmotte R, Morlé L, et al. Spectrin Jendouba: an alpha II/31 spectrin variant that is associated with elliptocytosis and carries a mutation distant from the dimer self-association site. Blood 1992; 80:809.
  12. Alloisio N, Wilmotte R, Maréchal J, et al. A splice site mutation of alpha-spectrin gene causing skipping of exon 18 in hereditary elliptocytosis. Blood 1993; 81:2791.
  13. Ullmann S, Kugler W, Dornwell M, et al. Spectrin alpha-Esche, a novel truncated spectrin alpha-chain variant due to skipping of exon 39, leading to severe infantile poikilocytosis. Blood 1996; 88(Suppl 1):4a.
  14. Fournier CM, Nicolas G, Gallagher PG, et al. Spectrin St Claude, a splicing mutation of the human alpha-spectrin gene associated with severe poikilocytic anemia. Blood 1997; 89:4584.
  15. Hassoun H, Coetzer TL, Vassiliadis JN, et al. A novel mobile element inserted in the alpha spectrin gene: spectrin dayton. A truncated alpha spectrin associated with hereditary elliptocytosis. J Clin Invest 1994; 94:643.
  16. Lane PA, Shew RL, Iarocci TA, et al. Unique alpha-spectrin mutant in a kindred with common hereditary elliptocytosis. J Clin Invest 1987; 79:989.
  17. Zhang Z, Weed SA, Gallagher PG, Morrow JS. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood 2001; 98:1645.
  18. Harper SL, Sriswasdi S, Tang HY, et al. The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation. Blood 2013; 122:3045.
  19. Gaetani M, Mootien S, Harper S, et al. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site. Blood 2008; 111:5712.
  20. Johnson CP, Gaetani M, Ortiz V, et al. Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding. Blood 2007; 109:3538.
  21. Delaunay J, Dhermy D. Mutations involving the spectrin heterodimer contact site: clinical expression and alterations in specific function. Semin Hematol 1993; 30:21.
  22. Lecomte MC, Garbarz M, Gautero H, et al. Molecular basis of clinical and morphological heterogeneity in hereditary elliptocytosis (HE) with spectrin alpha I variants. Br J Haematol 1993; 85:584.
  23. Maréchal J, Wilmotte R, Kanzaki A, et al. Ethnic distribution of allele alpha LELY, a low-expression allele of red-cell spectrin alpha-gene. Br J Haematol 1995; 90:553.
  24. Wilmotte R, Maréchal J, Morlé L, et al. Low expression allele alpha LELY of red cell spectrin is associated with mutations in exon 40 (alpha V/41 polymorphism) and intron 45 and with partial skipping of exon 46. J Clin Invest 1993; 91:2091.
  25. Randon J, Boulanger L, Marechal J, et al. A variant of spectrin low-expression allele alpha LELY carrying a hereditary elliptocytosis mutation in codon 28. Br J Haematol 1994; 88:534.
  26. Alloisio N, Morlé L, Maréchal J, et al. Sp alpha V/41: a common spectrin polymorphism at the alpha IV-alpha V domain junction. Relevance to the expression level of hereditary elliptocytosis due to alpha-spectrin variants located in trans. J Clin Invest 1991; 87:2169.
  27. Hanspal M, Hanspal JS, Sahr KE, et al. Molecular basis of spectrin deficiency in hereditary pyropoikilocytosis. Blood 1993; 82:1652.
  28. Tolpinrud W, Maksimova YD, Forget BG, Gallagher PG. Nonsense mutations of the alpha-spectrin gene in hereditary pyropoikilocytosis. Haematologica 2008; 93:1752.
  29. Qualtieri A, Pasqua A, Bisconte MG, et al. Spectrin Cosenza: a novel beta chain variant associated with Sp alphaI/74 hereditary elliptocytosis. Br J Haematol 1997; 97:273.
  30. Gallagher PG, Weed SA, Tse WT, et al. Recurrent fatal hydrops fetalis associated with a nucleotide substitution in the erythrocyte beta-spectrin gene. J Clin Invest 1995; 95:1174.
  31. Gallagher PG, Petruzzi MJ, Weed SA, et al. Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest 1997; 99:267.
  32. Kanzaki A, Rabodonirina M, Yawata Y, et al. A deletional frameshift mutation of the beta-spectrin gene associated with elliptocytosis in spectrin Tokyo (beta 220/216). Blood 1992; 80:2115.
  33. Garbarz M, Boulanger L, Pedroni S, et al. Spectrin beta Tandil, a novel shortened beta-chain variant associated with hereditary elliptocytosis is due to a deletional frameshift mutation in the beta-spectrin gene. Blood 1992; 80:1066.
  34. Wilmotte R, Miraglia del Giudice E, Marechal J, et al. A deletional frameshift mutation in spectrin beta-gene associated with hereditary elliptocytosis in spectrin Napoli. Br J Haematol 1994; 88:437.
  35. Tse WT, Gallagher PG, Pothier B, et al. An insertional frameshift mutation of the beta-spectrin gene associated with elliptocytosis in spectrin nice (beta 220/216). Blood 1991; 78:517.
  36. Jarolim P, Wichterle H, Hanspal M, et al. Beta spectrin PRAGUE: a truncated beta spectrin producing spectrin deficiency, defective spectrin heterodimer self-association and a phenotype of spherocytic elliptocytosis. Br J Haematol 1995; 91:502.
  37. Johnson RM, Ravindranath Y, Brohn F, Hussain M. A large erythroid spectrin beta-chain variant. Br J Haematol 1992; 80:6.
  38. Mohandas N, Winardi R, Knowles D, et al. Molecular basis for membrane rigidity of hereditary ovalocytosis. A novel mechanism involving the cytoplasmic domain of band 3. J Clin Invest 1992; 89:686.
  39. Schofield AE, Reardon DM, Tanner MJ. Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature 1992; 355:836.
  40. Sarabia VE, Casey JR, Reithmeier RA. Molecular characterization of the band 3 protein from Southeast Asian ovalocytes. J Biol Chem 1993; 268:10676.
  41. Jarolim P, Palek J, Amato D, et al. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A 1991; 88:11022.
  42. Liu SC, Palek J, Yi SJ, et al. Molecular basis of altered red blood cell membrane properties in Southeast Asian ovalocytosis: role of the mutant band 3 protein in band 3 oligomerization and retention by the membrane skeleton. Blood 1995; 86:349.
  43. Jarolim P, Rubin HL, Zhai S, et al. Band 3 Memphis: a widespread polymorphism with abnormal electrophoretic mobility of erythrocyte band 3 protein caused by substitution AAG----GAG (Lys----Glu) in codon 56. Blood 1992; 80:1592.
  44. Alloisio N, Dalla Venezia N, Rana A, et al. Evidence that red blood cell protein p55 may participate in the skeleton-membrane linkage that involves protein 4.1 and glycophorin C. Blood 1993; 82:1323.
  45. Cartron JP, Le Van Kim C, Colin Y. Glycophorin C and related glycoproteins: structure, function, and regulation. Semin Hematol 1993; 30:152.
  46. Salomao M, Chen K, Villalobos J, et al. Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood 2010; 116:267.
  47. Tomaselli MB, John KM, Lux SE. Elliptical erythrocyte membrane skeletons and heat-sensitive spectrin in hereditary elliptocytosis. Proc Natl Acad Sci U S A 1981; 78:1911.
  48. Palek J, Jarolim P. Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin Hematol 1993; 30:249.
  49. Tchernia G, Mohandas N, Shohet SB. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J Clin Invest 1981; 68:454.
  50. Takakuwa Y, Tchernia G, Rossi M, et al. Restoration of normal membrane stability to unstable protein 4.1-deficient erythrocyte membranes by incorporation of purified protein 4.1. J Clin Invest 1986; 78:80.
  51. Discher DE, Winardi R, Schischmanoff PO, et al. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol 1995; 130:897.
  52. Glele-Kakai C, Garbarz M, Lecomte MC, et al. Epidemiological studies of spectrin mutations related to hereditary elliptocytosis and spectrin polymorphisms in Benin. Br J Haematol 1996; 95:57.
  53. Nagel RL. Red-cell cytoskeletal abnormalities--implications for malaria. N Engl J Med 1990; 323:1558.
  54. Dhermy D, Schrével J, Lecomte MC. Spectrin-based skeleton in red blood cells and malaria. Curr Opin Hematol 2007; 14:198.
  55. Genton B, al-Yaman F, Mgone CS, et al. Ovalocytosis and cerebral malaria. Nature 1995; 378:564.
  56. Lin E, Tavul L, Michon P, et al. Minimal association of common red blood cell polymorphisms with Plasmodium falciparum infection and uncomplicated malaria in Papua New Guinean school children. Am J Trop Med Hyg 2010; 83:828.
  57. Gratzer WB, Dluzewski AR. The red blood cell and malaria parasite invasion. Semin Hematol 1993; 30:232.
  58. Fowkes FJ, Michon P, Pilling L, et al. Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea. Malar J 2008; 7:1.
  59. Magowan C, Coppel RL, Lau AO, et al. Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes. Blood 1995; 86:3196.
  60. Chishti AH, Palek J, Fisher D, et al. Reduced invasion and growth of Plasmodium falciparum into elliptocytic red blood cells with a combined deficiency of protein 4.1, glycophorin C, and p55. Blood 1996; 87:3462.