UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 47

of 'Genetic risk factors for prostate cancer'

47
TI
PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS.
AU
Southey MC, Goldgar DE, Winqvist R, Pylkäs K, Couch F, Tischkowitz M, Foulkes WD, Dennis J, Michailidou K, van Rensburg EJ, Heikkinen T, Nevanlinna H, Hopper JL, Dörk T, Claes KB, Reis-Filho J, Teo ZL, Radice P, Catucci I, Peterlongo P, Tsimiklis H, Odefrey FA, Dowty JG, Schmidt MK, Broeks A, Hogervorst FB, Verhoef S, Carpenter J, Clarke C, Scott RJ, Fasching PA, Haeberle L, Ekici AB, Beckmann MW, Peto J, Dos-Santos-Silva I, Fletcher O, Johnson N, Bolla MK, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Marme F, Burwinkel B, Yang R, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen S, Nielsen SF, Flyger H, Benitez J, Zamora MP, Perez JI, Menéndez P, Anton-Culver H, Neuhausen S, Ziogas A, Clarke CA, Brenner H, Arndt V, Stegmaier C, Brauch H, Brüning T, Ko YD, Muranen TA, Aittomäki K, Blomqvist C, Bogdanova NV, Antonenkova NN, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Spurdle AB, Investigators K, Australian Ovarian Cancer Study Group, Wauters E, Smeets D, Beu
SO
J Med Genet. 2016;53(12):800. Epub 2016 Sep 5.
 
BACKGROUND: The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study.
METHODS: We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant.
RESULTS: For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.1×10(-5)), PALB2 c.3113G>A OR 4.21 (95% CI 1.84 to 9.60, p=6.9×10(-8)) and ATM c.7271T>G OR 11.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.349A>G OR 2.26 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.538C>T OR 1.33 (95% CI 1.05 to 1.67) (p≤0.017). Evidence for prostate cancer risk was observed for CHEK2 c.1343T>G OR 3.03 (95% CI 1.53 to 6.03, p=0.0006) for African men and CHEK2 c.1312G>T OR 2.21 (95% CI 1.06 to 4.63, p=0.030) for European men. No evidence of association with ovarian cancer was found for any of these variants.
CONCLUSIONS: This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.
AD
Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia.
PMID