UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Evaluation of the patient with shoulder complaints

Author
Karl B Fields, MD
Section Editor
Francis G O'Connor, MD, MPH, FACSM
Deputy Editors
Jonathan Grayzel, MD, FAAEM
Susanna I Lee, MD, PhD

INTRODUCTION

Shoulder pain is a common musculoskeletal complaint that may be due either to intrinsic disorders of the shoulder or referred pain. The former include injuries and acute or chronic inflammation of the shoulder joint, tendons, surrounding ligaments, or periarticular structures [1].

An overview of common presentations and causes of shoulder discomfort and a basic clinical approach to diagnosis are reviewed. In-depth discussions of the shoulder examination and of the diagnosis and treatment of specific disorders of the shoulder are found separately. (See "Physical examination of the shoulder" and "Rotator cuff tendinopathy" and "Presentation and diagnosis of rotator cuff tears" and "Frozen shoulder (adhesive capsulitis)" and "Multidirectional instability of the shoulder" and "Glenohumeral osteoarthritis".)

ANATOMY AND BIOMECHANICS

A complex network of anatomic structures endows the human shoulder with tremendous mobility, greater than any other joint in the body (picture 1 and picture 2 and figure 1). The shoulder girdle is composed of three bones (the clavicle, scapula, and proximal humerus) and four articular surfaces (sternoclavicular, acromioclavicular, glenohumeral, and scapulothoracic) (figure 2A-C). The glenohumeral joint, commonly referred to as the shoulder joint, is the principal articulation.

Glenohumeral structures — The glenohumeral joint is loosely constrained within a thin capsule bounded by surrounding muscles and ligaments (figure 3 and figure 4 and figure 5 and figure 6 and figure 7 and figure 8 and figure 9). The shoulder's great mobility is due in large part to the shallow depth of the glenoid and the limited contact between the glenoid and the humeral head (figure 2A and figure 2B and figure 2C and table 1 and picture 1). Only 25 percent of the humeral head surface makes contact with the glenoid. The labrum, a fibrocartilaginous ring attached to the outer rim of the glenoid, provides some additional depth and stability. The shallowness and small surface area of the glenohumeral joint make it susceptible to instability and injury, and require that stability be provided primarily by extrinsic supports.

Surrounding muscles and ligaments provide these supports. The glenohumeral ligaments serve as the primary static stabilizers. They include the superior, middle, and inferior glenohumeral ligaments. The rotator cuff serves as the primary dynamic stabilizer. The rotator cuff is composed of four muscles (supraspinatus, infraspinatus, subscapularis, and teres minor) that form a cuff around the head of the humerus, to which these muscles attach.

                                        

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Apr 2017. | This topic last updated: Oct 10, 2016.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
References
Top
  1. Anderson BC. Office Orthopedics for Primary Care: Diagnosis, 3rd, WB Saunders, Philadelphia 2005.
  2. Clark JM, Harryman DT 2nd. Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J Bone Joint Surg Am 1992; 74:713.
  3. Reinold MM, Escamilla RF, Wilk KE. Current concepts in the scientific and clinical rationale behind exercises for glenohumeral and scapulothoracic musculature. J Orthop Sports Phys Ther 2009; 39:105.
  4. Harryman DT 2nd, Sidles JA, Clark JM, et al. Translation of the humeral head on the glenoid with passive glenohumeral motion. J Bone Joint Surg Am 1990; 72:1334.
  5. Vanderhooft, JE, Lippitt, SB, Harris, SL, et al. Glenohumeral stability from concavity-compression: a quantitative analysis. Orthop Trans 1992; 16:774.
  6. Gosk J, Urban M, Rutowski R. Entrapment of the suprascapular nerve: anatomy, etiology, diagnosis, treatment. Ortop Traumatol Rehabil 2007; 9:68.
  7. Martin SD, Warren RF, Martin TL, et al. Suprascapular neuropathy. Results of non-operative treatment. J Bone Joint Surg Am 1997; 79:1159.
  8. Gleason PD, Beall DP, Sanders TG, et al. The transverse humeral ligament: a separate anatomical structure or a continuation of the osseous attachment of the rotator cuff? Am J Sports Med 2006; 34:72.
  9. Miranda H, Viikari-Juntura E, Heistaro S, et al. A population study on differences in the determinants of a specific shoulder disorder versus nonspecific shoulder pain without clinical findings. Am J Epidemiol 2005; 161:847.
  10. Johnson TR. The shoulder. In: Essentials of Musculoskeletal Care, Snider RK. (Ed), American Academy of Orthopaedic Surgeons, Rosemont 1997.
  11. Worland RL, Lee D, Orozco CG, et al. Correlation of age, acromial morphology, and rotator cuff tear pathology diagnosed by ultrasound in asymptomatic patients. J South Orthop Assoc 2003; 12:23.
  12. Tempelhof S, Rupp S, Seil R. Age-related prevalence of rotator cuff tears in asymptomatic shoulders. J Shoulder Elbow Surg 1999; 8:296.
  13. Chakravarty K, Webley M. Shoulder joint movement and its relationship to disability in the elderly. J Rheumatol 1993; 20:1359.
  14. Neer CS 2nd. Impingement lesions. Clin Orthop Relat Res 1983; :70.
  15. Lequesne M, Dang N, Bensasson M, Mery C. Increased association of diabetes mellitus with capsulitis of the shoulder and shoulder-hand syndrome. Scand J Rheumatol 1977; 6:53.
  16. Morén-Hybbinette I, Moritz U, Scherstén B. The clinical picture of the painful diabetic shoulder--natural history, social consequences and analysis of concomitant hand syndrome. Acta Med Scand 1987; 221:73.
  17. Arkkila PE, Kantola IM, Viikari JS, Rönnemaa T. Shoulder capsulitis in type I and II diabetic patients: association with diabetic complications and related diseases. Ann Rheum Dis 1996; 55:907.
  18. Fraenkel L, Lavalley M, Felson D. The use of radiographs to evaluate shoulder pain in the ED. Am J Emerg Med 1998; 16:560.
  19. Fraenkel L, Shearer P, Mitchell P, et al. Improving the selective use of plain radiographs in the initial evaluation of shoulder pain. J Rheumatol 2000; 27:200.
  20. Torstensen ET, Hollinshead RM. Comparison of magnetic resonance imaging and arthroscopy in the evaluation of shoulder pathology. J Shoulder Elbow Surg 1999; 8:42.
  21. Burk DL Jr, Karasick D, Kurtz AB, et al. Rotator cuff tears: prospective comparison of MR imaging with arthrography, sonography, and surgery. AJR Am J Roentgenol 1989; 153:87.
  22. Yeu K, Jiang CC, Shih TT. Correlation between MRI and operative findings of the rotator cuff tear. J Formos Med Assoc 1994; 93:134.
  23. Sher JS, Uribe JW, Posada A, et al. Abnormal findings on magnetic resonance images of asymptomatic shoulders. J Bone Joint Surg Am 1995; 77:10.
  24. Iannotti JP, Zlatkin MB, Esterhai JL, et al. Magnetic resonance imaging of the shoulder. Sensitivity, specificity, and predictive value. J Bone Joint Surg Am 1991; 73:17.
  25. Stevenson JH, Trojian T. Evaluation of shoulder pain. J Fam Pract 2002; 51:605.
  26. Teefey SA, Rubin DA, Middleton WD, et al. Detection and quantification of rotator cuff tears. Comparison of ultrasonographic, magnetic resonance imaging, and arthroscopic findings in seventy-one consecutive cases. J Bone Joint Surg Am 2004; 86-A:708.
  27. Iannotti JP, Ciccone J, Buss DD, et al. Accuracy of office-based ultrasonography of the shoulder for the diagnosis of rotator cuff tears. J Bone Joint Surg Am 2005; 87:1305.
  28. Moosmayer S, Smith HJ. Diagnostic ultrasound of the shoulder--a method for experts only? Results from an orthopedic surgeon with relative inexpensive compared to operative findings. Acta Orthop 2005; 76:503.
  29. Teefey SA, Middleton WD, Payne WT, Yamaguchi K. Detection and measurement of rotator cuff tears with sonography: analysis of diagnostic errors. AJR Am J Roentgenol 2005; 184:1768.
  30. Schibany N, Zehetgruber H, Kainberger F, et al. Rotator cuff tears in asymptomatic individuals: a clinical and ultrasonographic screening study. Eur J Radiol 2004; 51:263.
  31. Sugimoto K. Ultrasonographic evaluation of the Bankart lesion. J Shoulder Elbow Surg 2004; 13:286.
  32. Martinoli C, Bianchi S, Prato N, et al. US of the shoulder: non-rotator cuff disorders. Radiographics 2003; 23:381.
  33. Middleton WD, Payne WT, Teefey SA, et al. Sonography and MRI of the shoulder: comparison of patient satisfaction. AJR Am J Roentgenol 2004; 183:1449.
  34. Blanchard TK, Bearcroft PW, Constant CR, et al. Diagnostic and therapeutic impact of MRI and arthrography in the investigation of full-thickness rotator cuff tears. Eur Radiol 1999; 9:638.
Topic Outline

GRAPHICS