Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®

Epidemiology, classification, and pathogenesis of focal segmental glomerulosclerosis

Jochen Reiser, MD, PhD
Section Editors
Richard J Glassock, MD, MACP
Fernando C Fervenza, MD, PhD
Deputy Editor
Albert Q Lam, MD


Focal segmental glomerulosclerosis (FSGS) is a histologic lesion, rather than a disease, that is commonly found to underlie the nephrotic syndrome in adults and children, particularly in the United States, Brazil, and many other countries [1-6].

The focal nature of the glomerulosclerosis means that some mild cases of FSGS will be missed on renal biopsy due to sampling error and will be misclassified as minimal change disease. (See "Etiology, clinical features, and diagnosis of minimal change disease in adults", section on 'Primary MCD versus primary FSGS'.)

The epidemiology, classification, and pathogenesis of FSGS will be reviewed in this topic. The treatment of both primary FSGS and recurrent disease in the renal transplant are discussed separately. (See "Treatment of primary focal segmental glomerulosclerosis" and "Focal segmental glomerulosclerosis in the transplanted kidney".)


A survey of renal biopsies performed in the United States from 1995 to 1997 for idiopathic nephrotic syndrome in adults found that focal segmental glomerulosclerosis (FSGS) was the most common lesion seen, accounting for 35 percent of all cases and over 50 percent of cases among blacks [1]. (See 'FSGS in African Americans' below.)

According to data from the United States Renal Data System (USRDS) collected over 21 years, FSGS is the most common pathology identified in patients with end-stage renal disease (ESRD) in the United States [3]. The prevalence of FSGS as a lesion associated with ESRD has risen. In 1980, FSGS was the cause of ESRD in only 0.2 percent of patients; by 2000, it was responsible for 2.3 percent of cases (excluding patients with HIV), an 11-fold increase. The risk of ESRD was fourfold higher in black patients compared with white and Asian patients and 1.5- to twofold higher in males compared with females.


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Sep 2016. | This topic last updated: Dec 4, 2015.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
  1. Haas M, Meehan SM, Karrison TG, Spargo BH. Changing etiologies of unexplained adult nephrotic syndrome: a comparison of renal biopsy findings from 1976-1979 and 1995-1997. Am J Kidney Dis 1997; 30:621.
  2. Braden GL, Mulhern JG, O'Shea MH, et al. Changing incidence of glomerular diseases in adults. Am J Kidney Dis 2000; 35:878.
  3. Kitiyakara C, Eggers P, Kopp JB. Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis 2004; 44:815.
  4. Bahiense-Oliveira M, Saldanha LB, Mota EL, et al. Primary glomerular diseases in Brazil (1979-1999): is the frequency of focal and segmental glomerulosclerosis increasing? Clin Nephrol 2004; 61:90.
  5. Filler G, Young E, Geier P, et al. Is there really an increase in non-minimal change nephrotic syndrome in children? Am J Kidney Dis 2003; 42:1107.
  6. Korbet SM, Genchi RM, Borok RZ, Schwartz MM. The racial prevalence of glomerular lesions in nephrotic adults. Am J Kidney Dis 1996; 27:647.
  7. Rivera F, López-Gómez JM, Pérez-García R, Spanish Registry of Glomerulonephritis. Clinicopathologic correlations of renal pathology in Spain. Kidney Int 2004; 66:898.
  8. D'Agati V. Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 2003; 23:117.
  9. Meyrier A. Nephrotic focal segmental glomerulosclerosis in 2004: an update. Nephrol Dial Transplant 2004; 19:2437.
  10. Greenberg A, Bastacky SI, Iqbal A, et al. Focal segmental glomerulosclerosis associated with nephrotic syndrome in cholesterol atheroembolism: clinicopathological correlations. Am J Kidney Dis 1997; 29:334.
  11. D'Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N Engl J Med 2011; 365:2398.
  12. D'Agati VD, Fogo AB, Bruijn JA, Jennette JC. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis 2004; 43:368.
  13. Rennke HG, Klein PS. Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis. Am J Kidney Dis 1989; 13:443.
  14. Remuzzi A, Mazerska M, Gephardt GN, et al. Three-dimensional analysis of glomerular morphology in patients with subtotal nephrectomy. Kidney Int 1995; 48:155.
  15. Fogo A, Glick AD, Horn SL, Horn RG. Is focal segmental glomerulosclerosis really focal? Distribution of lesions in adults and children. Kidney Int 1995; 47:1690.
  16. Beaman M, Howie AJ, Hardwicke J, et al. The glomerular tip lesion: a steroid responsive nephrotic syndrome. Clin Nephrol 1987; 27:217.
  17. Haas M, Yousefzadeh N. Glomerular tip lesion in minimal change nephropathy: a study of autopsies before 1950. Am J Kidney Dis 2002; 39:1168.
  18. Stokes MB, Markowitz GS, Lin J, et al. Glomerular tip lesion: a distinct entity within the minimal change disease/focal segmental glomerulosclerosis spectrum. Kidney Int 2004; 65:1690.
  19. Thomas DB, Franceschini N, Hogan SL, et al. Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. Kidney Int 2006; 69:920.
  20. Deegens JK, Assmann KJ, Steenbergen EJ, et al. Idiopathic focal segmental glomerulosclerosis: a favourable prognosis in untreated patients? Neth J Med 2005; 63:393.
  21. Howie AJ, Pankhurst T, Sarioglu S, et al. Evolution of nephrotic-associated focal segmental glomerulosclerosis and relation to the glomerular tip lesion. Kidney Int 2005; 67:987.
  22. Chun MJ, Korbet SM, Schwartz MM, Lewis EJ. Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. J Am Soc Nephrol 2004; 15:2169.
  23. Stokes MB, Valeri AM, Markowitz GS, D'Agati VD. Cellular focal segmental glomerulosclerosis: Clinical and pathologic features. Kidney Int 2006; 70:1783.
  24. Clement LC, Avila-Casado C, Macé C, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 2011; 17:117.
  25. Siegel NJ, Gaudio KM, Krassner LS, et al. Steroid-dependent nephrotic syndrome in children: histopathology and relapses after cyclophosphamide treatment. Kidney Int 1981; 19:454.
  26. Nash MA, Greifer I, Olbing H, et al. The significance of focal sclerotic lesions of glomeruli in children. J Pediatr 1976; 88:806.
  27. Garin EH, Mu W, Arthur JM, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 2010; 78:296.
  28. Laurens WE, Vanrenterghem YF, Steels PS, Van Damme BJ. A new single nephron model of focal and segmental glomerulosclerosis in the Munich-Wistar rat. Kidney Int 1994; 45:143.
  29. Rennke HG. How does glomerular epithelial cell injury contribute to progressive glomerular damage? Kidney Int Suppl 1994; 45:S58.
  30. Dijkman H, Smeets B, van der Laak J, et al. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int 2005; 68:1562.
  31. Wei C, Möller CC, Altintas MM, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008; 14:55.
  32. Wei C, Trachtman H, Li J, et al. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol 2012; 23:2051.
  33. Kemper MJ, Wolf G, Müller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 2001; 344:386.
  34. Kemper MJ, Wei C, Reiser J. Transmission of glomerular permeability factor soluble urokinase plasminogen activator receptor (suPAR) from a mother to child. Am J Kidney Dis 2013; 61:352.
  35. Franco Palacios CR, Lieske JC, Wadei HM, et al. Urine but not serum soluble urokinase receptor (suPAR) may identify cases of recurrent FSGS in kidney transplant candidates. Transplantation 2013; 96:394.
  36. Wei C, El Hindi S, Li J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 2011; 17:952.
  37. Cathelin D, Placier S, Ploug M, et al. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J Am Soc Nephrol 2014; 25:1662.
  38. Shankland SJ, Pollak MR. A suPAR circulating factor causes kidney disease. Nat Med 2011; 17:926.
  39. Huang J, Liu G, Zhang YM, et al. Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. Kidney Int 2013; 84:366.
  40. Segarra A, Jatem E, Quiles MT, et al. [Diagnostic value of soluble urokinase-type plasminogen activator receptor serum levels in adults with idiopathic nephrotic syndrome]. Nefrologia 2014; 34:46.
  41. Segarra A, Jatem E, Quiles MT, et al. [Value of soluble urokinase receptor serum levels in the differential diagnosis between idiopathic and secondary focal segmental glomerulosclerosis]. Nefrologia 2014; 34:53.
  42. Alachkar N, Wei C, Arend LJ, et al. Podocyte effacement closely links to suPAR levels at time of posttransplantation focal segmental glomerulosclerosis occurrence and improves with therapy. Transplantation 2013; 96:649.
  43. Sinha A, Bajpai J, Saini S, et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int 2014; 85:649.
  44. Wada T, Nangaku M, Maruyama S, et al. A multicenter cross-sectional study of circulating soluble urokinase receptor in Japanese patients with glomerular disease. Kidney Int 2014; 85:641.
  45. Meijers B, Maas RJ, Sprangers B, et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int 2014; 85:636.
  46. Li F, Zheng C, Zhong Y, et al. Relationship between serum soluble urokinase plasminogen activator receptor level and steroid responsiveness in FSGS. Clin J Am Soc Nephrol 2014; 9:1903.
  47. Huang J, Liu G, Zhang YM, et al. Urinary soluble urokinase receptor levels are elevated and pathogenic in patients with primary focal segmental glomerulosclerosis. BMC Med 2014; 12:81.
  48. Gebeshuber CA, Kornauth C, Dong L, et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 2013; 19:481.
  49. Rydel JJ, Korbet SM, Borok RZ, Schwartz MM. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis 1995; 25:534.
  50. Cattran DC, Rao P. Long-term outcome in children and adults with classic focal segmental glomerulosclerosis. Am J Kidney Dis 1998; 32:72.
  51. Pokhariyal S, Gulati S, Prasad N, et al. Duration of optimal therapy for idiopathic focal segmental glomerulosclerosis. J Nephrol 2003; 16:691.
  52. Crook ED, Habeeb D, Gowdy O, et al. Effects of steroids in focal segmental glomerulosclerosis in a predominantly African-American population. Am J Med Sci 2005; 330:19.
  53. Cascio S, Paran S, Puri P. Associated urological anomalies in children with unilateral renal agenesis. J Urol 1999; 162:1081.
  54. Henegar JR, Bigler SA, Henegar LK, et al. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol 2001; 12:1211.
  55. Wiggins JE, Goyal M, Sanden SK, et al. Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol 2005; 16:2953.
  56. Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int 1998; 54:687.
  57. Ding G, Reddy K, Kapasi AA, et al. Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am J Physiol Renal Physiol 2002; 283:F173.
  58. Durvasula RV, Petermann AT, Hiromura K, et al. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 2004; 65:30.
  59. Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997; 99:342.
  60. Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 1999; 42:1341.
  61. Lemley KV, Lafayette RA, Safai M, et al. Podocytopenia and disease severity in IgA nephropathy. Kidney Int 2002; 61:1475.
  62. Wu DT, Bitzer M, Ju W, et al. TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. J Am Soc Nephrol 2005; 16:3211.
  63. Yang HC, Ma LJ, Ma J, Fogo AB. Peroxisome proliferator-activated receptor-gamma agonist is protective in podocyte injury-associated sclerosis. Kidney Int 2006; 69:1756.
  64. Peters I, Tossidou I, Achenbach J, et al. IGF-binding protein-3 modulates TGF-beta/BMP-signaling in glomerular podocytes. J Am Soc Nephrol 2006; 17:1644.
  65. Floege J, Alpers CE, Burns MW, et al. Glomerular cells, extracellular matrix accumulation, and the development of glomerulosclerosis in the remnant kidney model. Lab Invest 1992; 66:485.
  66. Yaddanapudi S, Altintas MM, Kistler AD, et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J Clin Invest 2011; 121:3965.
  67. Sever S, Altintas MM, Nankoe SR, et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 2007; 117:2095.
  68. Faul C, Donnelly M, Merscher-Gomez S, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 2008; 14:931.
  69. Abdi R, Dong VM, Rubel JR, et al. Correlation between glomerular size and long-term renal function in patients with substantial loss of renal mass. J Urol 2003; 170:42.
  70. Novick AC, Gephardt G, Guz B, et al. Long-term follow-up after partial removal of a solitary kidney. N Engl J Med 1991; 325:1058.
  71. Narkun-Burgess DM, Nolan CR, Norman JE, et al. Forty-five year follow-up after uninephrectomy. Kidney Int 1993; 43:1110.
  72. Kasiske BL, Ma JZ, Louis TA, Swan SK. Long-term effects of reduced renal mass in humans. Kidney Int 1995; 48:814.
  73. Atiyeh B, Husmann D, Baum M. Contralateral renal abnormalities in patients with renal agenesis and noncystic renal dysplasia. Pediatrics 1993; 91:812.
  74. Argueso LR, Ritchey ML, Boyle ET Jr, et al. Prognosis of patients with unilateral renal agenesis. Pediatr Nephrol 1992; 6:412.
  75. Chen YT, Coleman RA, Scheinman JI, et al. Renal disease in type I glycogen storage disease. N Engl J Med 1988; 318:7.
  76. Wesson DE. The initiation and progression of sickle cell nephropathy. Kidney Int 2002; 61:2277.
  77. Kambham N, Markowitz GS, Valeri AM, et al. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 2001; 59:1498.
  78. Praga M, Hernández E, Morales E, et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol Dial Transplant 2001; 16:1790.
  79. Kasiske BL, Crosson JT. Renal disease in patients with massive obesity. Arch Intern Med 1986; 146:1105.
  80. Praga M, Hernández E, Andrés A, et al. Effects of body-weight loss and captopril treatment on proteinuria associated with obesity. Nephron 1995; 70:35.
  81. Fletcher EC. Obstructive sleep apnea and the kidney. J Am Soc Nephrol 1993; 4:1111.
  82. Chen HM, Liu ZH, Zeng CH, et al. Podocyte lesions in patients with obesity-related glomerulopathy. Am J Kidney Dis 2006; 48:772.
  83. Sklar AH, Chaudhary BA. Reversible proteinuria in obstructive sleep apnea syndrome. Arch Intern Med 1988; 148:87.
  84. Wesson DE, Kurtzman NA, Frommer JP. Massive obesity and nephrotic proteinuria with a normal renal biopsy. Nephron 1985; 40:235.
  85. Chen HM, Li SJ, Chen HP, et al. Obesity-related glomerulopathy in China: a case series of 90 patients. Am J Kidney Dis 2008; 52:58.
  86. Chagnac A, Weinstein T, Herman M, et al. The effects of weight loss on renal function in patients with severe obesity. J Am Soc Nephrol 2003; 14:1480.
  87. Sharma K, Ramachandrarao S, Qiu G, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008; 118:1645.
  88. Serra A, Romero R, Lopez D, et al. Renal injury in the extremely obese patients with normal renal function. Kidney Int 2008; 73:947.
  89. D'Agati VD, Markowitz GS. Supersized kidneys: Lessons from the preclinical obese kidney. Kidney Int 2008; 73:909.
  90. Mathis BJ, Kim SH, Calabrese K, et al. A locus for inherited focal segmental glomerulosclerosis maps to chromosome 19q13. Kidney Int 1998; 53:282.
  91. Casserly LF, Chow N, Ali S, et al. Proteinuria in obstructive sleep apnea. Kidney Int 2001; 60:1484.
  92. Morales E, Valero MA, León M, et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis 2003; 41:319.
  93. Shen WW, Chen HM, Chen H, et al. Obesity-related glomerulopathy: body mass index and proteinuria. Clin J Am Soc Nephrol 2010; 5:1401.
  94. Nochy D, Heudes D, Glotz D, et al. Preeclampsia associated focal and segmental glomerulosclerosis and glomerular hypertrophy: a morphometric analysis. Clin Nephrol 1994; 42:9.
  95. Nishimoto K, Shiiki H, Nishino T, et al. Glomerular hypertrophy in preeclamptic patients with focal segmental glomerulosclerosis. A morphometric analysis. Clin Nephrol 1999; 51:209.
  96. Herlitz LC, Markowitz GS, Farris AB, et al. Development of focal segmental glomerulosclerosis after anabolic steroid abuse. J Am Soc Nephrol 2010; 21:163.
  97. Dressler D, Wright JR, Houghton JB, Kalra PA. Another case of focal segmental glomerulosclerosis in an acutely uraemic patient following interferon therapy. Nephrol Dial Transplant 1999; 14:2049.
  98. Coroneos E, Petrusevska G, Varghese F, Truong LD. Focal segmental glomerulosclerosis with acute renal failure associated with alpha-interferon therapy. Am J Kidney Dis 1996; 28:888.
  99. Tovar JL, Buti M, Segarra A, et al. De novo nephrotic syndrome following pegylated interferon alfa 2b/ribavirin therapy for chronic hepatitis C infection. Int Urol Nephrol 2008; 40:539.
  100. Markowitz GS, Nasr SH, Stokes MB, D'Agati VD. Treatment with IFN-{alpha}, -{beta}, or -{gamma} is associated with collapsing focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2010; 5:607.
  101. Yoshioka K, Takemura T, Murakami K, et al. Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys. Lab Invest 1993; 68:154.
  102. Sharma K, Ziyadeh FN. The emerging role of transforming growth factor-beta in kidney diseases. Am J Physiol 1994; 266:F829.
  103. Wang W, Koka V, Lan HY. Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton) 2005; 10:48.
  104. Hou CC, Wang W, Huang XR, et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 2005; 166:761.
  105. Huang Y, Border WA, Noble NA. Perspectives on blockade of TGFbeta overexpression. Kidney Int 2006; 69:1713.
  106. Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 1992; 360:361.
  107. Mizuno S, Kurosawa T, Matsumoto K, et al. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 1998; 101:1827.
  108. Praga M, Borstein B, Andres A, et al. Nephrotic proteinuria without hypoalbuminemia: clinical characteristics and response to angiotensin-converting enzyme inhibition. Am J Kidney Dis 1991; 17:330.
  109. Praga M, Morales E, Herrero JC, et al. Absence of hypoalbuminemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am J Kidney Dis 1999; 33:52.
  110. Faubert PF, Porush JG. Familial focal segmental glomerulosclerosis: nine cases in four families and review of the literature. Am J Kidney Dis 1997; 30:265.
  111. Conlon PJ, Lynn K, Winn MP, et al. Spectrum of disease in familial focal and segmental glomerulosclerosis. Kidney Int 1999; 56:1863.
  112. Winn MP, Conlon PJ, Lynn KL, et al. Linkage of a gene causing familial focal segmental glomerulosclerosis to chromosome 11 and further evidence of genetic heterogeneity. Genomics 1999; 58:113.
  113. Kaplan JM, Kim SH, North KN, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 2000; 24:251.
  114. Vats A, Nayak A, Ellis D, et al. Familial nephrotic syndrome: clinical spectrum and linkage to chromosome 19q13. Kidney Int 2000; 57:875.
  115. Boute N, Gribouval O, Roselli S, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000; 24:349.
  116. Vats AN, Ishwad C, Vats KR, et al. Steroid-resistant nephrotic syndrome and congenital anomalies of kidneys: evidence of locus on chromosome 13q. Kidney Int 2003; 64:17.
  117. Kitamura A, Tsukaguchi H, Iijima K, et al. Genetics and clinical features of 15 Asian families with steroid-resistant nephrotic syndrome. Nephrol Dial Transplant 2006; 21:3133.
  118. Pollak MR. The genetic basis of FSGS and steroid-resistant nephrosis. Semin Nephrol 2003; 23:141.
  119. Caridi G, Bertelli R, Carrea A, et al. Prevalence, genetics, and clinical features of patients carrying podocin mutations in steroid-resistant nonfamilial focal segmental glomerulosclerosis. J Am Soc Nephrol 2001; 12:2742.
  120. Ruf RG, Lichtenberger A, Karle SM, et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 2004; 15:722.
  121. Tsukaguchi H, Yager H, Dawborn J, et al. A locus for adolescent and adult onset familial focal segmental glomerulosclerosis on chromosome 1q25-31. J Am Soc Nephrol 2000; 11:1674.
  122. Rana K, Isbel N, Buzza M, et al. Clinical, histopathologic, and genetic studies in nine families with focal segmental glomerulosclerosis. Am J Kidney Dis 2003; 41:1170.
  123. Prakash S, Chung KW, Sinha S, et al. Autosomal dominant progressive nephropathy with deafness: linkage to a new locus on chromosome 11q24. J Am Soc Nephrol 2003; 14:1794.
  124. Reiser J, Polu KR, Möller CC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 2005; 37:739.
  125. Winn MP, Conlon PJ, Lynn KL, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005; 308:1801.
  126. Liu XL, Doné SC, Yan K, et al. Defective trafficking of nephrin missense mutants rescued by a chemical chaperone. J Am Soc Nephrol 2004; 15:1731.
  127. Nishibori Y, Liu L, Hosoyamada M, et al. Disease-causing missense mutations in NPHS2 gene alter normal nephrin trafficking to the plasma membrane. Kidney Int 2004; 66:1755.
  128. Philippe A, Nevo F, Esquivel EL, et al. Nephrin mutations can cause childhood-onset steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2008; 19:1871.
  129. Santín S, García-Maset R, Ruíz P, et al. Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int 2009; 76:1268.
  130. Fuchshuber A, Mehls O. Familial steroid-resistant nephrotic syndromes: recent advances. Nephrol Dial Transplant 2000; 15:1897.
  131. Tsukaguchi H, Sudhakar A, Le TC, et al. NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J Clin Invest 2002; 110:1659.
  132. Pereira AC, Pereira AB, Mota GF, et al. NPHS2 R229Q functional variant is associated with microalbuminuria in the general population. Kidney Int 2004; 65:1026.
  133. He N, Zahirieh A, Mei Y, et al. Recessive NPHS2 (Podocin) mutations are rare in adult-onset idiopathic focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2007; 2:31.
  134. McKenzie LM, Hendrickson SL, Briggs WA, et al. NPHS2 variation in sporadic focal segmental glomerulosclerosis. J Am Soc Nephrol 2007; 18:2987.
  135. Machuca E, Hummel A, Nevo F, et al. Clinical and epidemiological assessment of steroid-resistant nephrotic syndrome associated with the NPHS2 R229Q variant. Kidney Int 2009; 75:727.
  136. Tonna SJ, Needham A, Polu K, et al. NPHS2 variation in focal and segmental glomerulosclerosis. BMC Nephrol 2008; 9:13.
  137. Weins A, Kenlan P, Herbert S, et al. Mutational and Biological Analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. J Am Soc Nephrol 2005; 16:3694.
  138. Henderson JM, Alexander MP, Pollak MR. Patients with ACTN4 mutations demonstrate distinctive features of glomerular injury. J Am Soc Nephrol 2009; 20:961.
  139. Santín S, Ars E, Rossetti S, et al. TRPC6 mutational analysis in a large cohort of patients with focal segmental glomerulosclerosis. Nephrol Dial Transplant 2009; 24:3089.
  140. Brown EJ, Schlöndorff JS, Becker DJ, et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat Genet 2010; 42:72.
  141. Boyer O, Benoit G, Gribouval O, et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol 2011; 22:239.
  142. Mele C, Iatropoulos P, Donadelli R, et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N Engl J Med 2011; 365:295.
  143. Kim JM, Wu H, Green G, et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 2003; 300:1298.
  144. Boyer O, Woerner S, Yang F, et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J Am Soc Nephrol 2013; 24:1216.
  145. Abbott KC, Hypolite I, Welch PG, Agodoa LY. Human immunodeficiency virus/acquired immunodeficiency syndrome-associated nephropathy at end-stage renal disease in the United States: patient characteristics and survival in the pre highly active antiretroviral therapy era. J Nephrol 2001; 14:377.
  146. Freedman BI, Soucie JM, Stone SM, Pegram S. Familial clustering of end-stage renal disease in blacks with HIV-associated nephropathy. Am J Kidney Dis 1999; 34:254.
  147. Fogo A, Breyer JA, Smith MC, et al. Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans: a report from the African American Study of Kidney Disease (AASK) Trial. AASK Pilot Study Investigators. Kidney Int 1997; 51:244.
  148. Toto RD. Proteinuria and hypertensive nephrosclerosis in African Americans. Kidney Int Suppl 2004; :S102.
  149. Kopp JB, Smith MW, Nelson GW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 2008; 40:1175.
  150. Pollak MR. Kidney disease and African ancestry. Nat Genet 2008; 40:1145.
  151. Kao WH, Klag MJ, Meoni LA, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 2008; 40:1185.
  152. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010; 329:841.
  153. Genovese G, Tonna SJ, Knob AU, et al. A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9. Kidney Int 2010; 78:698.
  154. Freedman BI, Kopp JB, Langefeld CD, et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol 2010; 21:1422.
  155. Kopp JB, Nelson GW, Sampath K, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 2011; 22:2129.
  156. Cunningham EE, Zielezny MA, Venuto RC. Heroin-associated nephropathy. A nationwide problem. JAMA 1983; 250:2935.
  157. do Sameiro Faria M, Sampaio S, Faria V, Carvalho E. Nephropathy associated with heroin abuse in Caucasian patients. Nephrol Dial Transplant 2003; 18:2308.
  158. Dubrow A, Mittman N, Ghali V, Flamenbaum W. The changing spectrum of heroin-associated nephropathy. Am J Kidney Dis 1985; 5:36.
  159. Friedman EA, Tao TK. Disappearance of uremia due to heroin-associated nephropathy. Am J Kidney Dis 1995; 25:689.
  160. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 15-1983. A 24-year-old man with cervical lymphadenopathy and the nephrotic syndrome. N Engl J Med 1983; 308:888.
  161. Rault R, Holley JL, Banner BF, el-Shahawy M. Glomerulonephritis and non-Hodgkin's lymphoma: a report of two cases and review of the literature. Am J Kidney Dis 1992; 20:84.