Smarter Decisions,
Better Care

UpToDate synthesizes the most recent medical information into evidence-based practical recommendations clinicians trust to make the right point-of-care decisions.

  • Rigorous editorial process: Evidence-based treatment recommendations
  • World-Renowned physician authors: over 5,100 physician authors and editors around the globe
  • Innovative technology: integrates into the workflow; access from EMRs

Choose from the list below to learn more about subscriptions for a:


Subscribers log in here


Related articles

Primary percutaneous coronary intervention versus fibrinolysis in acute ST elevation myocardial infarction: Clinical trials

INTRODUCTION

Primary percutaneous coronary intervention (PCI), if performed in a timely fashion, is the reperfusion therapy of choice in patients who have had an acute ST elevation myocardial infarction (STEMI) or an MI with new or presumably new left bundle branch block or a true posterior MI. The clinical trials that support this conclusion, and which have generally compared PCI with fibrinolysis, will be reviewed here. The discussion of the circumstances in which fibrinolysis may be either a reasonable alternative to PCI or even preferred is found elsewhere. (See "Acute ST elevation myocardial infarction: Selecting a reperfusion strategy".)

Issues related to the performance of primary PCI, such as the optimal time to intervention and adjunctive therapies, the importance of hospital and operator volume, the role of PCI after fibrinolysis (eg, rescue PCI or facilitated or adjunctive PCI), and the role of PCI in non-ST elevation acute coronary syndromes are discussed separately. (See "Primary percutaneous coronary intervention in acute ST elevation myocardial infarction: Determinants of outcome" and "Percutaneous coronary intervention after fibrinolysis for acute ST elevation myocardial infarction" and "Coronary angiography and revascularization for unstable angina or non-ST elevation acute myocardial infarction".)

LIMITATIONS OF FIBRINOLYSIS

Given the primary role of thrombus in the genesis of acute coronary occlusion, the introduction of fibrinolytic therapy was a major advance in the treatment of acute ST elevation myocardial infarction (STEMI). The net effect in major fibrinolytic trials was an approximate 30 percent reduction in the 7 to 10 percent short-term mortality. (See "Characteristics of fibrinolytic (thrombolytic) agents and clinical trials in acute ST elevation myocardial infarction".)

Despite the clear benefits of fibrinolytic therapy compared with no reperfusion and its ease of use, there are issues of both efficacy and safety that limit its use. The following limitations provided part of the impetus for primary percutaneous coronary intervention (PCI):

The benefit of fibrinolysis is greatest when therapy is given within the first four hours after the onset of symptoms, particularly within the first 70 minutes as the resistance of cross-linked fibrin to fibrinolysis is time-dependent (figure 1) [1,2]. Any longer delay decreases the amount of myocardial salvage and functional benefit. The absolute mortality benefit compared to placebo at five weeks is approximately 3 percent for those presenting within six hours from symptom onset, 2 percent for those presenting within 7 to 12 hours, and a nonsignificant 1 percent for those presenting within 13 to 18 hours [3]. Unfortunately, many patients present to the hospital more than six hours after the onset of symptoms. (See "Fibrinolytic therapy in acute ST elevation myocardial infarction: Initiation of therapy", section on 'Timing'.)

                  

Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Nov 2014. | This topic last updated: Oct 21, 2013.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2014 UpToDate, Inc.
References
Top
  1. Boersma E, Maas AC, Deckers JW, Simoons ML. Early thrombolytic treatment in acute myocardial infarction: reappraisal of the golden hour. Lancet 1996; 348:771.
  2. Weaver WD, Cerqueira M, Hallstrom AP, et al. Prehospital-initiated vs hospital-initiated thrombolytic therapy. The Myocardial Infarction Triage and Intervention Trial. JAMA 1993; 270:1211.
  3. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT) Collaborative Group. Lancet 1994; 343:311.
  4. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. The GUSTO investigators. N Engl J Med 1993; 329:673.
  5. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. The GUSTO Angiographic Investigators. N Engl J Med 1993; 329:1615.
  6. Chesebro JH, Knatterud G, Roberts R, et al. Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: A comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 1987; 76:142.
  7. Simes RJ, Topol EJ, Holmes DR Jr, et al. Link between the angiographic substudy and mortality outcomes in a large randomized trial of myocardial reperfusion. Importance of early and complete infarct artery reperfusion. GUSTO-I Investigators. Circulation 1995; 91:1923.
  8. Ross AM, Coyne KS, Moreyra E, et al. Extended mortality benefit of early postinfarction reperfusion. GUSTO-I Angiographic Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries Trial. Circulation 1998; 97:1549.
  9. Vogt A, von Essen R, Tebbe U, et al. Impact of early perfusion status of the infarct-related artery on short-term mortality after thrombolysis for acute myocardial infarction: retrospective analysis of four German multicenter studies. J Am Coll Cardiol 1993; 21:1391.
  10. Karagounis L, Sorensen SG, Menlove RL, et al. Does thrombolysis in myocardial infarction (TIMI) perfusion grade 2 represent a mostly patent artery or a mostly occluded artery? Enzymatic and electrocardiographic evidence from the TEAM-2 study. Second Multicenter Thrombolysis Trial of Eminase in Acute Myocardial Infarction. J Am Coll Cardiol 1992; 19:1.
  11. Anderson JL, Karagounis LA, Becker LC, et al. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction. Ventriculographic, enzymatic, and electrocardiographic evidence from the TEAM-3 Study. Circulation 1993; 87:1829.
  12. Mehta RH, Harjai KJ, Cox D, et al. Clinical and angiographic correlates and outcomes of suboptimal coronary flow inpatients with acute myocardial infarction undergoing primary percutaneous coronary intervention. J Am Coll Cardiol 2003; 42:1739.
  13. Stone GW, Grines CL, Cox DA, et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 2002; 346:957.
  14. Armstrong PW, Fu Y, Chang WC, et al. Acute coronary syndromes in the GUSTO-IIb trial: prognostic insights and impact of recurrent ischemia. The GUSTO-IIb Investigators. Circulation 1998; 98:1860.
  15. Langer A, Krucoff MW, Klootwijk P, et al. Prognostic significance of ST segment shift early after resolution of ST elevation in patients with myocardial infarction treated with thrombolytic therapy: the GUSTO-I ST Segment Monitoring Substudy. J Am Coll Cardiol 1998; 31:783.
  16. Topol EJ, Califf RM, George BS, et al. A randomized trial of immediate versus delayed elective angioplasty after intravenous tissue plasminogen activator in acute myocardial infarction. N Engl J Med 1987; 317:581.
  17. Ohman EM, Califf RM, Topol EJ, et al. Consequences of reocclusion after successful reperfusion therapy in acute myocardial infarction. TAMI Study Group. Circulation 1990; 82:781.
  18. Hudson MP, Granger CB, Topol EJ, et al. Early reinfarction after fibrinolysis: experience from the global utilization of streptokinase and tissue plasminogen activator (alteplase) for occluded coronary arteries (GUSTO I) and global use of strategies to open occluded coronary arteries (GUSTO III) trials. Circulation 2001; 104:1229.
  19. Gibson CM, Karha J, Murphy SA, et al. Early and long-term clinical outcomes associated with reinfarction following fibrinolytic administration in the Thrombolysis in Myocardial Infarction trials. J Am Coll Cardiol 2003; 42:7.
  20. Dönges K, Schiele R, Gitt A, et al. Incidence, determinants, and clinical course of reinfarction in-hospital after index acute myocardial infarction (results from the pooled data of the maximal individual therapy in acute myocardial infarction [MITRA], and the myocardial infarction registry [MIR]). Am J Cardiol 2001; 87:1039.
  21. Gore JM, Granger CB, Simoons ML, et al. Stroke after thrombolysis. Mortality and functional outcomes in the GUSTO-I trial. Global Use of Strategies to Open Occluded Coronary Arteries. Circulation 1995; 92:2811.
  22. Gurwitz JH, Gore JM, Goldberg RJ, et al. Risk for intracranial hemorrhage after tissue plasminogen activator treatment for acute myocardial infarction. Participants in the National Registry of Myocardial Infarction 2. Ann Intern Med 1998; 129:597.
  23. Brass LM, Lichtman JH, Wang Y, et al. Intracranial hemorrhage associated with thrombolytic therapy for elderly patients with acute myocardial infarction: results from the Cooperative Cardiovascular Project. Stroke 2000; 31:1802.
  24. Cannon CP, Bahit MC, Haugland JM, et al. Underutilization of evidence-based medications in acute ST elevation myocardial infarction: results of the Thrombolysis in Myocardial Infarction (TIMI) 9 Registry. Crit Pathw Cardiol 2002; 1:44.
  25. Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1993; 328:673.
  26. A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute myocardial infarction. The Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes (GUSTO IIb) Angioplasty Substudy Investigators. N Engl J Med 1997; 336:1621.
  27. Weaver WD, Simes RJ, Betriu A, et al. Comparison of primary coronary angioplasty and intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review. JAMA 1997; 278:2093.
  28. Nunn CM, O'Neill WW, Rothbaum D, et al. Long-term outcome after primary angioplasty: report from the primary angioplasty in myocardial infarction (PAMI-I) trial. J Am Coll Cardiol 1999; 33:640.
  29. Stone GW, Grines CL, Browne KF, et al. Influence of acute myocardial infarction location on in-hospital and late outcome after primary percutaneous transluminal coronary angioplasty versus tissue plasminogen activator therapy. Am J Cardiol 1996; 78:19.
  30. Saito S, Hosokawa FG, Kim K, et al. Primary stent implantation without coumadin in acute myocardial infarction. J Am Coll Cardiol 1996; 28:74.
  31. Bauters C, Lablanche JM, Van Belle E, et al. Effects of coronary stenting on restenosis and occlusion after angioplasty of the culprit vessel in patients with recent myocardial infarction. Circulation 1997; 96:2854.
  32. Stone GW, Brodie BR, Griffin JJ, et al. Clinical and angiographic follow-Up after primary stenting in acute myocardial infarction: the Primary Angioplasty in Myocardial Infarction (PAMI) stent pilot trial. Circulation 1999; 99:1548.
  33. Grines CL, Cox DA, Stone GW, et al. Coronary angioplasty with or without stent implantation for acute myocardial infarction. Stent Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1999; 341:1949.
  34. Suryapranata H, van 't Hof AW, Hoorntje JC, et al. Randomized comparison of coronary stenting with balloon angioplasty in selected patients with acute myocardial infarction. Circulation 1998; 97:2502.
  35. Antoniucci D, Santoro GM, Bolognese L, et al. A clinical trial comparing primary stenting of the infarct-related artery with optimal primary angioplasty for acute myocardial infarction: results from the Florence Randomized Elective Stenting in Acute Coronary Occlusions (FRESCO) trial. J Am Coll Cardiol 1998; 31:1234.
  36. Nordmann AJ, Bucher H, Hengstler P, et al. Primary stenting versus primary balloon angioplasty for treating acute myocardial infarction. Cochrane Database Syst Rev 2005; :CD005313.
  37. Andersen HR, Nielsen TT, Rasmussen K, et al. A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. N Engl J Med 2003; 349:733.
  38. Thune JJ, Hoefsten DE, Lindholm MG, et al. Simple risk stratification at admission to identify patients with reduced mortality from primary angioplasty. Circulation 2005; 112:2017.
  39. Busk M, Maeng M, Rasmussen K, et al. The Danish multicentre randomized study of fibrinolytic therapy vs. primary angioplasty in acute myocardial infarction (the DANAMI-2 trial): outcome after 3 years follow-up. Eur Heart J 2008; 29:1259.
  40. Widimský P, Budesínský T, Vorác D, et al. Long distance transport for primary angioplasty vs immediate thrombolysis in acute myocardial infarction. Final results of the randomized national multicentre trial--PRAGUE-2. Eur Heart J 2003; 24:94.
  41. Widimsky P, Bilkova D, Penicka M, et al. Long-term outcomes of patients with acute myocardial infarction presenting to hospitals without catheterization laboratory and randomized to immediate thrombolysis or interhospital transport for primary percutaneous coronary intervention. Five years' follow-up of the PRAGUE-2 Trial. Eur Heart J 2007; 28:679.
  42. Le May MR, Labinaz M, Davies RF, et al. Stenting versus thrombolysis in acute myocardial infarction trial (STAT). J Am Coll Cardiol 2001; 37:985.
  43. Schömig A, Kastrati A, Dirschinger J, et al. Coronary stenting plus platelet glycoprotein IIb/IIIa blockade compared with tissue plasminogen activator in acute myocardial infarction. Stent versus Thrombolysis for Occluded Coronary Arteries in Patients with Acute Myocardial Infarction Study Investigators. N Engl J Med 2000; 343:385.
  44. Kastrati A, Mehilli J, Dirschinger J, et al. Myocardial salvage after coronary stenting plus abciximab versus fibrinolysis plus abciximab in patients with acute myocardial infarction: a randomised trial. Lancet 2002; 359:920.
  45. Grines CL, Westerhausen DR Jr, Grines LL, et al. A randomized trial of transfer for primary angioplasty versus on-site thrombolysis in patients with high-risk myocardial infarction: the Air Primary Angioplasty in Myocardial Infarction study. J Am Coll Cardiol 2002; 39:1713.
  46. Nielsen PH, Maeng M, Busk M, et al. Primary angioplasty versus fibrinolysis in acute myocardial infarction: long-term follow-up in the Danish acute myocardial infarction 2 trial. Circulation 2010; 121:1484.
  47. Morrow DA, Antman EM, Charlesworth A, et al. TIMI risk score for ST-elevation myocardial infarction: A convenient, bedside, clinical score for risk assessment at presentation: An intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation 2000; 102:2031.
  48. Kent DM, Schmid CH, Lau J, Selker HP. Is primary angioplasty for some as good as primary angioplasty for all? J Gen Intern Med 2002; 17:887.
  49. Huynh T, Perron S, O'Loughlin J, et al. Comparison of primary percutaneous coronary intervention and fibrinolytic therapy in ST-segment-elevation myocardial infarction: bayesian hierarchical meta-analyses of randomized controlled trials and observational studies. Circulation 2009; 119:3101.
  50. García E, Elízaga J, Pérez-Castellano N, et al. Primary angioplasty versus systemic thrombolysis in anterior myocardial infarction. J Am Coll Cardiol 1999; 33:605.
  51. Berger PB, Holmes DR Jr, Stebbins AL, et al. Impact of an aggressive invasive catheterization and revascularization strategy on mortality in patients with cardiogenic shock in the Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries (GUSTO-I) trial. An observational study. Circulation 1997; 96:122.
  52. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 1999; 341:625.
  53. Hochman JS, Sleeper LA, White HD, et al. One-year survival following early revascularization for cardiogenic shock. JAMA 2001; 285:190.
  54. Peterson LR, Chandra NC, French WJ, et al. Reperfusion therapy in patients with acute myocardial infarction and prior coronary artery bypass graft surgery (National Registry of Myocardial Infarction-2). Am J Cardiol 1999; 84:1287.
  55. Massel D. Primary angioplasty in acute myocardial infarction: Hypothetical estimate of superiority over aspirin or untreated controls. Am J Med 2005; 118:113.
  56. Grzybowski M, Clements EA, Parsons L, et al. Mortality benefit of immediate revascularization of acute ST-segment elevation myocardial infarction in patients with contraindications to thrombolytic therapy: a propensity analysis. JAMA 2003; 290:1891.
  57. Behar S, Gottlieb S, Hod H, et al. The outcome of patients with acute myocardial infarction ineligible for thrombolytic therapy. Israeli Thrombolytic Survey Group. Am J Med 1996; 101:184.
  58. Zahn R, Schuster S, Schiele R, et al. Comparison of primary angioplasty with conservative therapy in patients with acute myocardial infarction and contraindications for thrombolytic therapy. Maximal Individual Therapy in Acute Myocardial Infarction (MITRA) Study Group. Catheter Cardiovasc Interv 1999; 46:127.
  59. Kastrati A, Mehilli J, Nekolla S, et al. A randomized trial comparing myocardial salvage achieved by coronary stenting versus balloon angioplasty in patients with acute myocardial infarction considered ineligible for reperfusion therapy. J Am Coll Cardiol 2004; 43:734.
  60. Svilaas T, Zijlstra F. The benefit of an invasive approach in thrombolysis-ineligible patients with acute myocardial infarction. Am J Med 2005; 118:123.