UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 68

of 'Enterotoxicity of chemotherapeutic agents'

68
TI
Polymorphisms in MIR27A Associated with Early-Onset Toxicity in Fluoropyrimidine-Based Chemotherapy.
AU
Amstutz U, Offer SM, Sistonen J, Joerger M, Diasio RB, Largiadèr CR
SO
Clin Cancer Res. 2015 May;21(9):2038-44. Epub 2015 Feb 5.
 
PURPOSE: The microRNA miR-27a was recently shown to directly regulate dihydropyrimidine dehydrogenase (DPD), the key enzyme in fluoropyrimidine catabolism. A common polymorphism (rs895819A>G) in the miR-27a genomic region (MIR27A) was associated with reduced DPD activity in healthy volunteers, but the clinical relevance of this effect is still unknown. Here, we assessed the association of MIR27A germline variants with early-onset fluoropyrimidine toxicity.
EXPERIMENTAL DESIGN: MIR27A was sequenced in 514 patients with cancer receiving fluoropyrimidine-based chemotherapy. Associations of MIR27A polymorphisms with early-onset (cycles 1-2) fluoropyrimidine toxicity were assessed in the context of known risk variants in the DPD gene (DPYD) and additional covariates associated with toxicity.
RESULTS: The association of rs895819A>G with early-onset fluoropyrimidine toxicity was strongly dependent on DPYD risk variant carrier status (Pinteraction = 0.0025). In patients carrying DPYD risk variants, rs895819G was associated with a strongly increasedtoxicity risk [OR, 7.6; 95% confidence interval (CI), 1.7-34.7; P = 0.0085]. Overall, 71% (12/17) of patients who carried both rs895819G and a DPYD risk variant experienced severe toxicity. In patients without DPYD risk variants, rs895819G was associated with a modest decrease in toxicity risk (OR, 0.62; 95% CI, 0.43-0.9; P = 0.012).
CONCLUSIONS: These results indicate that miR-27a and rs895819A>G may be clinically relevant for further toxicity risk stratification in carriers of DPYD risk variants. Our data suggest that direct suppression of DPD by miR-27a is primarily relevant in the context of fluoropyrimidine toxicity in patients with reduced DPD activity. However, miR-27a regulation of additional targets may outweigh its effect on DPD in patients without DPYD risk variants.
AD
University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
PMID