UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Medline ® Abstract for Reference 60

of 'Enterotoxicity of chemotherapeutic agents'

60
TI
Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5'-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)- related toxicity compared with controls.
AU
Raida M, Schwabe W, Häusler P, Van Kuilenburg AB, Van Gennip AH, Behnke D, Höffken K
SO
Clin Cancer Res. 2001;7(9):2832.
 
Deficiency of dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme in 5-fluorouracil (5-FU) catabolism, has been linked to toxic side effects of 5-FU. The most prominent mutation of the DPD gene resulting in severe DPD deficiency is a G to A mutation in the GT 5'-splice recognition site of intron 14 (exon 14-skipping mutation). The corresponding mRNA lacks exon 14, and the enzymatic activity of the translated DPD protein is virtually absent. We developed a reverse transcription-PCR-based assay suitable for routine identification of the exon 14-skipping mutation and screened a control cohort of 851 Caucasian individuals as well as a cohort of 25 cancer patients reported by their physicians to have suffered from WHO grades 3-4 toxicity upon 5-FU chemotherapy. Within the control cohort, in total, eight heterozygotes were detected (0.94%): one heterozygote in 51 healthy donors, (1.96%); five heterozygotes in 572 hospital patients (0.87%); and two heterozygotes in 228 colorectal tumor patients (0.88%). Among the 25 patients with severe 5-FU-related toxicity, 5 (20%) were heterozygous and 1 (4%) was homozygous for the exon 14-skipping mutation. All six patients had experienced WHO grade 4 myelosuppression. Lethal outcome was seen in the homozygous and two of the heterozygous cases. We conclude that carriers of the DPD exon 14-skipping mutation are at significantly increased risk to experience life-threatening myelosuppression upon 5-FU treatment, even when the allelic status is heterozygous. These data lead us to suggest routine testing for the exon 14-skipping mutation before 5-FU treatment.
AD
Department of Internal Medicine II, Friedrich-Schiller-Universität Jena, D-07740 Jena, Germany. m.raida@icrf.icnet.uk
PMID