Official reprint from UpToDate®
www.uptodate.com ©2017 UpToDate®

Disease-modifying treatment of relapsing-remitting multiple sclerosis in adults

Michael J Olek, DO
Section Editor
Francisco González-Scarano, MD
Deputy Editor
John F Dashe, MD, PhD


Multiple sclerosis (MS) is an immune-mediated inflammatory demyelinating disease of the central nervous system (CNS) that is a leading cause of disability in young adults.

The treatment of relapsing forms of MS is reviewed here, primarily focused on disease-modifying therapies. The treatment of progressive forms of MS is reviewed elsewhere. (See "Treatment of progressive multiple sclerosis in adults".)

Other aspects of MS are discussed separately:

(See "Pathogenesis and epidemiology of multiple sclerosis".)

(See "Clinical course and classification of multiple sclerosis".)


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: May 2017. | This topic last updated: Apr 14, 2017.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2017 UpToDate, Inc.
  1. Capra R, Cordioli C, Rasia S, et al. Assessing long-term prognosis improvement as a consequence of treatment pattern changes in MS. Mult Scler 2017; :1352458516687402.
  2. Lizak N, Lugaresi A, Alroughani R, et al. Highly active immunomodulatory therapy ameliorates accumulation of disability in moderately advanced and advanced multiple sclerosis. J Neurol Neurosurg Psychiatry 2017; 88:196.
  3. Tramacere I, Del Giovane C, Salanti G, et al. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2015; :CD011381.
  4. Metin H, Huppertz H. Adjusted Indirect Comparison of Oral Multiple Sclerosis Agents. Value Health 2015; 18:A750.
  5. Fox RJ, Cutter G, Chan A, et al. Comparative Effectiveness Using A Matching-Adjusted Indirect Comparison Between Delayed-Release Dimethyl Fumarate and Fingolimod for The Treatment of Relapsing-Remitting Multiple Sclerosis. Value Health 2015; 18:A750.
  6. Thomas RH, Wakefield RA. Oral disease-modifying therapies for relapsing-remitting multiple sclerosis. Am J Health Syst Pharm 2015; 72:25.
  7. Sormani MP, Gasperini C, Romeo M, et al. Assessing response to interferon-β in a multicenter dataset of patients with MS. Neurology 2016; 87:134.
  8. La Mantia L, Di Pietrantonj C, Rovaris M, et al. Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2014; :CD009333.
  9. FDA approves Zinbryta to treat multiple sclerosis. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm504000.htm (Accessed on June 09, 2016).
  10. Kasper LH, Reder AT. Immunomodulatory activity of interferon-beta. Ann Clin Transl Neurol 2014; 1:622.
  11. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 1993; 43:655.
  12. Interferon beta-1b in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. The IFNB Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 1995; 45:1277.
  13. Goodin DS, Reder AT, Ebers GC, et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology 2012; 78:1315.
  14. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 1998; 352:1498.
  15. Durelli L, Verdun E, Barbero P, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 2002; 359:1453.
  16. Koch-Henriksen N, Sørensen PS, Christensen T, et al. A randomized study of two interferon-beta treatments in relapsing-remitting multiple sclerosis. Neurology 2006; 66:1056.
  17. Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 1996; 39:285.
  18. Clanet M, Radue EW, Kappos L, et al. A randomized, double-blind, dose-comparison study of weekly interferon beta-1a in relapsing MS. Neurology 2002; 59:1507.
  19. Panitch H, Goodin DS, Francis G, et al. Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. Neurology 2002; 59:1496.
  20. Lublin FD. When marketing and science intersect: do patients with MS benefit? Neurology 2002; 59:1480.
  21. Kieburtz K, McDermott M. Needed in MS: evidence, not EVIDENCE. Neurology 2002; 59:1482.
  22. Schwid SR, Thorpe J, Sharief M, et al. Enhanced benefit of increasing interferon beta-1a dose and frequency in relapsing multiple sclerosis: the EVIDENCE Study. Arch Neurol 2005; 62:785.
  23. Kieseier BC, Calabresi PA. PEGylation of interferon-β-1a: a promising strategy in multiple sclerosis. CNS Drugs 2012; 26:205.
  24. Oh J, Calabresi PA. Emerging injectable therapies for multiple sclerosis. Lancet Neurol 2013; 12:1115.
  25. Calabresi PA, Kieseier BC, Arnold DL, et al. Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 2014; 13:657.
  26. PRISMS Study Group and the University of British Columbia MS/MRI Analysis Group.. PRISMS-4: Long-term efficacy of interferon-beta-1a in relapsing MS. Neurology 2001; 56:1628.
  27. Kappos L, Traboulsee A, Constantinescu C, et al. Long-term subcutaneous interferon beta-1a therapy in patients with relapsing-remitting MS. Neurology 2006; 67:944.
  28. Rudick RA, Cutter G. Interferon-beta for multiple sclerosis: Long-term benefits? Ann Neurol 2007; 61:283.
  29. Trojano M, Pellegrini F, Fuiani A, et al. New natural history of interferon-beta-treated relapsing multiple sclerosis. Ann Neurol 2007; 61:300.
  30. Renoux C, Suissa S. Immortal time bias in the study of effectiveness of interferon-beta in multiple sclerosis. Ann Neurol 2008; 64:109.
  31. Shirani A, Zhao Y, Karim ME, et al. Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. JAMA 2012; 308:247.
  32. Drulovic J, Kostic J, Mesaros S, et al. Interferon-beta and disability progression in relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg 2013; 115 Suppl 1:S65.
  33. Río J, Nos C, Bonaventura I, et al. Corticosteroids, ibuprofen, and acetaminophen for IFNbeta-1a flu symptoms in MS: a randomized trial. Neurology 2004; 63:525.
  34. Tremlett HL, Yoshida EM, Oger J. Liver injury associated with the beta-interferons for MS: a comparison between the three products. Neurology 2004; 62:628.
  35. Francis GS, Grumser Y, Alteri E, et al. Hepatic reactions during treatment of multiple sclerosis with interferon-beta-1a: incidence and clinical significance. Drug Saf 2003; 26:815.
  36. Ekstein D, Linetsky E, Abramsky O, Karussis D. Polyneuropathy associated with interferon beta treatment in patients with multiple sclerosis. Neurology 2005; 65:456.
  37. Hunt D, Kavanagh D, Drummond I, et al. Thrombotic microangiopathy associated with interferon beta. N Engl J Med 2014; 370:1270.
  38. Olea T, Díaz-Mancebo R, Picazo ML, et al. Thrombotic microangiopathy associated with use of interferon-beta. Int J Nephrol Renovasc Dis 2012; 5:97.
  39. Kavanagh D, McGlasson S, Jury A, et al. Type I interferon causes thrombotic microangiopathy by a dose-dependent toxic effect on the microvasculature. Blood 2016; 128:2824.
  40. Petereit HF, Nolden S, Schoppe S, et al. Low interferon gamma producers are better treatment responders: a two-year follow-up of interferon beta-treated multiple sclerosis patients. Mult Scler 2002; 8:492.
  41. Killestein J, Hintzen RQ, Uitdehaag BM, et al. Baseline T cell reactivity in multiple sclerosis is correlated to efficacy of interferon-beta. J Neuroimmunol 2002; 133:217.
  42. Wandinger KP, Lünemann JD, Wengert O, et al. TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet 2003; 361:2036.
  43. Malucchi S, Gilli F, Caldano M, et al. Predictive markers for response to interferon therapy in patients with multiple sclerosis. Neurology 2008; 70:1119.
  44. Durelli L, Barbero P, Bergui M, et al. MRI activity and neutralising antibody as predictors of response to interferon beta treatment in multiple sclerosis. J Neurol Neurosurg Psychiatry 2008; 79:646.
  45. Hesse D, Sellebjerg F, Sorensen PS. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity. Neurology 2009; 73:372.
  46. Rudick RA, Lee JC, Simon J, et al. Defining interferon beta response status in multiple sclerosis patients. Ann Neurol 2004; 56:548.
  47. Sorensen PS, Ross C, Clemmesen KM, et al. Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet 2003; 362:1184.
  48. Malucchi S, Sala A, Gilli F, et al. Neutralizing antibodies reduce the efficacy of betaIFN during treatment of multiple sclerosis. Neurology 2004; 62:2031.
  49. Kappos L, Clanet M, Sandberg-Wollheim M, et al. Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology 2005; 65:40.
  50. Francis GS, Rice GP, Alsop JC, PRISMS Study Group. Interferon beta-1a in MS: results following development of neutralizing antibodies in PRISMS. Neurology 2005; 65:48.
  51. Goodin DS, Frohman EM, Hurwitz B, et al. Neutralizing antibodies to interferon beta: assessment of their clinical and radiographic impact: an evidence report: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2007; 68:977.
  52. Bertolotto A, Gilli F, Sala A, et al. Persistent neutralizing antibodies abolish the interferon beta bioavailability in MS patients. Neurology 2003; 60:634.
  53. Sorensen PS, Koch-Henriksen N, Ross C, et al. Appearance and disappearance of neutralizing antibodies during interferon-beta therapy. Neurology 2005; 65:33.
  54. Giovannoni G, Goodman A. Neutralizing anti-IFN-beta antibodies: how much more evidence do we need to use them in practice? Neurology 2005; 65:6.
  55. Rudick RA, Ransohoff RM. Biomarkers for interferon response in MS: are we there yet? Neurology 2008; 70:1069.
  56. Polman CH, Bertolotto A, Deisenhammer F, et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol 2010; 9:740.
  57. Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14593.
  58. La Mantia L, Munari LM, Lovati R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst Rev 2010; :CD004678.
  59. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995; 45:1268.
  60. Johnson KP, Brooks BR, Cohen JA, et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group. Neurology 1998; 50:701.
  61. Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging--measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol 2001; 49:290.
  62. Subramaniam K, Pavli P, Llewellyn H, Chitturi S. Glatiramer acetate induced hepatotoxicity. Curr Drug Saf 2012; 7:186.
  63. Makhani N, Ngan BY, Kamath BM, Yeh EA. Glatiramer acetate-induced acute hepatotoxicity in an adolescent with MS. Neurology 2013; 81:850.
  64. Khan O, Rieckmann P, Boyko A, et al. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 2013; 73:705.
  65. Salama HH, Hong J, Zang YC, et al. Blocking effects of serum reactive antibodies induced by glatiramer acetate treatment in multiple sclerosis. Brain 2003; 126:2638.
  66. Bains SN, Hsieh FH, Rensel MR, et al. Glatiramer acetate: successful desensitization for treatment of multiple sclerosis. Ann Allergy Asthma Immunol 2010; 104:321.
  67. Gold R, Giovannoni G, Selmaj K, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 2013; 381:2167.
  68. Kappos L, Wiendl H, Selmaj K, et al. Daclizumab HYP versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med 2015; 373:1418.
  69. Kalincik T, Brown JWL, Robertson N, et al. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurol 2017; 16:271.
  70. Cocco E, Marrosu MG. The current role of mitoxantrone in the treatment of multiple sclerosis. Expert Rev Neurother 2014; 14:607.
  71. Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int J Mol Sci 2015; 16:16414.
  72. Riera R, Porfírio GJ, Torloni MR. Alemtuzumab for multiple sclerosis. Cochrane Database Syst Rev 2016; 4:CD011203.
  73. CAMMS223 Trial Investigators, Coles AJ, Compston DA, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008; 359:1786.
  74. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 2012; 380:1819.
  75. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 2012; 380:1829.
  76. Coles AJ, Fox E, Vladic A, et al. Alemtuzumab more effective than interferon β-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology 2012; 78:1069.
  77. Cuker A, Stasi R, Palmer J, et al. Successful detection and management of immune thrombocytopenia in alemtuzumab-treated patients with active relapsing-remitting multiple sclerosis (P2.198). Neurology 2014; 82:2.198.
  78. Pfeuffer S, Beuker C, Ruck T, et al. Acute cholecystitis during treatment with alemtuzumab in 3 patients with RRMS. Neurology 2016; 87:2380.
  79. LEMTRADA REMS (Risk Evaluation and Mitigation Strategy) program. www.lemtradarems.com (Accessed on December 10, 2014).
  80. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med 2017; 376:221.
  81. Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011; 378:1779.
  82. FDA approves new drug to treat multiple sclerosis. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm549325.htm (Accessed on March 30, 2017).
  83. Ocrevus - Highlights of prescribing information. https://www.gene.com/download/pdf/ocrevus_prescribing.pdf (Accessed on March 30, 2017).
  84. Goodin DS, Arnason BG, Coyle PK, et al. The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2003; 61:1332.
  85. Marriott JJ, Miyasaki JM, Gronseth G, et al. Evidence Report: The efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2010; 74:1463.
  86. Martinelli V, Cocco E, Capra R, et al. Acute myeloid leukemia in Italian patients with multiple sclerosis treated with mitoxantrone. Neurology 2011; 77:1887.
  87. Chan A, Lo-Coco F. Mitoxantrone-related acute leukemia in MS: an open or closed book? Neurology 2013; 80:1529.
  88. Buttmann M, Seuffert L, Mäder U, Toyka KV. Malignancies after mitoxantrone for multiple sclerosis: A retrospective cohort study. Neurology 2016; 86:2203.
  89. Boster A, Edan G, Frohman E, et al. Intense immunosuppression in patients with rapidly worsening multiple sclerosis: treatment guidelines for the clinician. Lancet Neurol 2008; 7:173.
  90. Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012; 367:1087.
  91. Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367:1098.
  92. Xu Z, Zhang F, Sun F, et al. Dimethyl fumarate for multiple sclerosis. Cochrane Database Syst Rev 2015; :CD011076.
  93. Muñoz MA, Kulick CG, Kortepeter CM, et al. Liver injury associated with dimethyl fumarate in multiple sclerosis patients. Mult Scler 2017; :1352458516688351.
  94. Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N Engl J Med 2015; 372:1476.
  95. Nieuwkamp DJ, Murk JL, van Oosten BW, et al. PML in a patient without severe lymphocytopenia receiving dimethyl fumarate. N Engl J Med 2015; 372:1474.
  96. Bartsch T, Rempe T, Wrede A, et al. Progressive neurologic dysfunction in a psoriasis patient treated with dimethyl fumarate. Ann Neurol 2015; 78:501.
  97. Lehmann-Horn K, Penkert H, Grein P, et al. PML during dimethyl fumarate treatment of multiple sclerosis: How does lymphopenia matter? Neurology 2016; 87:440.
  98. Zeyda M, Poglitsch M, Geyeregger R, et al. Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. Arthritis Rheum 2005; 52:2730.
  99. O'Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 2011; 365:1293.
  100. He D, Zhang C, Zhao X, et al. Teriflunomide for multiple sclerosis. Cochrane Database Syst Rev 2016; 3:CD009882.
  101. Confavreux C, O'Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2014; 13:247.
  102. O'Connor PW, Li D, Freedman MS, et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 2006; 66:894.
  103. O'Connor P, Comi G, Freedman MS, et al. Long-term safety and efficacy of teriflunomide: Nine-year follow-up of the randomized TEMSO study. Neurology 2016; 86:920.
  104. New drugs for relapsing multiple sclerosis. Med Lett Drugs Ther 2012; 54:89.
  105. Kieseier BC, Benamor M. Pregnancy outcomes following maternal and paternal exposure to teriflunomide during treatment for relapsing-remitting multiple sclerosis. Neurol Ther 2014; 3:133.
  106. Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol 2011; 69:759.
  107. La Mantia L, Tramacere I, Firwana B, et al. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2016; 4:CD009371.
  108. Kappos L, Radue EW, O'Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010; 362:387.
  109. Kappos L, O'Connor P, Radue EW, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology 2015; 84:1582.
  110. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362:402.
  111. Cohen JA, Khatri B, Barkhof F, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry 2016; 87:468.
  112. Gross CM, Baumgartner A, Rauer S, Stich O. Multiple sclerosis rebound following herpes zoster infection and suspension of fingolimod. Neurology 2012; 79:2006.
  113. Ratchford JN, Costello K, Reich DS, Calabresi PA. Varicella-zoster virus encephalitis and vasculopathy in a patient treated with fingolimod. Neurology 2012; 79:2002.
  114. Arvin AM, Wolinsky JS, Kappos L, et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol 2015; 72:31.
  115. Visser F, Wattjes MP, Pouwels PJ, et al. Tumefactive multiple sclerosis lesions under fingolimod treatment. Neurology 2012; 79:2000.
  116. Centonze D, Rossi S, Rinaldi F, Gallo P. Severe relapses under fingolimod treatment prescribed after natalizumab. Neurology 2012; 79:2004.
  117. Pilz G, Harrer A, Wipfler P, et al. Tumefactive MS lesions under fingolimod: a case report and literature review. Neurology 2013; 81:1654.
  118. Hatcher SE, Waubant E, Nourbakhsh B, et al. Rebound Syndrome in Patients With Multiple Sclerosis After Cessation of Fingolimod Treatment. JAMA Neurol 2016; 73:790.
  119. Gilenya (fingolimod): Drug Safety Communication - FDA warns about cases of rare brain infection. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm457183.htm (Accessed on August 04, 2015).
  120. Gyang TV, Hamel J, Goodman AD, et al. Fingolimod-associated PML in a patient with prior immunosuppression. Neurology 2016; 86:1843.
  121. Achtnichts L, Obreja O, Conen A, et al. Cryptococcal Meningoencephalitis in a Patient With Multiple Sclerosis Treated With Fingolimod. JAMA Neurol 2015; 72:1203.
  122. Huang D. Disseminated cryptococcosis in a patient with multiple sclerosis treated with fingolimod. Neurology 2015; 85:1001.
  123. The Globe and Mail. Health Canada launches investigation of oral MS drug. www.theglobeandmail.com/life/health/new-health/health-news/health-canada-launches-investigation-of-oral-ms-drug/article2351665/ (Accessed on February 28, 2012).
  124. Health officials launch investigation in deaths of patients taking fingolimod. Neurology Today 2012; 12(4):1. http://journals.lww.com/neurotodayonline/Fulltext/2012/02160/Health_Officials_Launch_Investigation_in_Deaths_of.1.aspx (Accessed on April 03, 2012).
  125. FDA Drug Safety Communication: Revised recommendations for cardiovascular monitoring and use of multiple sclerosis drug Gilenya (fingolimod). www.fda.gov/Drugs/DrugSafety/ucm303192.htm (Accessed on May 15, 2012).
  126. Gilenya medication guide. Novartis Pharmaceuticals Corporation. www.pharma.us.novartis.com/product/pi/pdf/gilenya.pdf (Accessed on May 15, 2012).
  127. Jain N, Bhatti MT. Fingolimod-associated macular edema: incidence, detection, and management. Neurology 2012; 78:672.
  128. Faber H, Fischer HJ, Weber F. Prolonged and symptomatic bradycardia following a single dose of fingolimod. Mult Scler 2013; 19:126.
  129. Geissbühler H, Butzkueven S, Hernández-Diaz K, et al. Pregnancy outcomes from fingolimod clinical trials and post-marketing experience and the need for a multinational Gilenya (fingolimod) Pregnancy Exposure Registry in multiple sclerosis. 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis, 2012.
  130. Karlsson G, Francis G, Koren G, et al. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology 2014; 82:674.
  131. Double-masked trial of azathioprine in multiple sclerosis. British and Dutch Multiple Sclerosis Azathioprine Trial Group. Lancet 1988; 2:179.
  132. Goodkin DE, Bailly RC, Teetzen ML, et al. The efficacy of azathioprine in relapsing-remitting multiple sclerosis. Neurology 1991; 41:20.
  133. Milanese C, La Mantia L, Salmaggi A, Eoli M. A double blind study on azathioprine efficacy in multiple sclerosis: final report. J Neurol 1993; 240:295.
  134. Casetta I, Iuliano G, Filippini G. Azathioprine for multiple sclerosis. Cochrane Database Syst Rev 2007; :CD003982.
  135. Massacesi L, Parigi A, Barilaro A, et al. Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging. Arch Neurol 2005; 62:1843.
  136. Siddiqui AH, Zivadinov R, Benedict RH, et al. Prospective randomized trial of venous angioplasty in MS (PREMiSe). Neurology 2014; 83:441.
  137. van Zuuren EJ, Fedorowicz Z, Pucci E, et al. Percutaneous transluminal angioplasty for treatment of chronic cerebrospinal venous insufficiency (CCSVI) in multiple sclerosis patients. Cochrane Database Syst Rev 2012; 12:CD009903.
  138. Experimental multiple sclerosis vascular shunting procedure halted at Stanford. Ann Neurol 2010; 67:A13.
  139. FDA safety communication: Chronic cerebrospinal venous insufficiency treatment in multiple sclerosis patients. www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm303318.htm (Accessed on June 27, 2012).
  140. Kuehn BM. FDA warns about the risks of unproven surgical therapy for multiple sclerosis. JAMA 2012; 307:2575.
  141. Bourdette DN, Cohen JA. Venous angioplasty for "CCSVI" in multiple sclerosis: ending a therapeutic misadventure. Neurology 2014; 83:388.
  142. Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 2010; 362:416.
  143. Killian JM, Bressler RB, Armstrong RM, Huston DP. Controlled pilot trial of monthly intravenous cyclophosphamide in multiple sclerosis. Arch Neurol 1988; 45:27.
  144. Gladstone DE, Zamkoff KW, Krupp L, et al. High-dose cyclophosphamide for moderate to severe refractory multiple sclerosis. Arch Neurol 2006; 63:1388.
  145. Krishnan C, Kaplin AI, Brodsky RA, et al. Reduction of disease activity and disability with high-dose cyclophosphamide in patients with aggressive multiple sclerosis. Arch Neurol 2008; 65:1044.
  146. Ravnborg M, Sørensen PS, Andersson M, et al. Methylprednisolone in combination with interferon beta-1a for relapsing-remitting multiple sclerosis (MECOMBIN study): a multicentre, double-blind, randomised, placebo-controlled, parallel-group trial. Lancet Neurol 2010; 9:672.
  147. Cohen JA, Imrey PB, Calabresi PA, et al. Results of the Avonex Combination Trial (ACT) in relapsing-remitting MS. Neurology 2009; 72:535.
  148. Sorensen PS, Mellgren SI, Svenningsson A, et al. NORdic trial of oral Methylprednisolone as add-on therapy to Interferon beta-1a for treatment of relapsing-remitting Multiple Sclerosis (NORMIMS study): a randomised, placebo-controlled trial. Lancet Neurol 2009; 8:519.
  149. Fazekas F, Deisenhammer F, Strasser-Fuchs S, et al. Randomised placebo-controlled trial of monthly intravenous immunoglobulin therapy in relapsing-remitting multiple sclerosis. Austrian Immunoglobulin in Multiple Sclerosis Study Group. Lancet 1997; 349:589.
  150. Achiron A, Gabbay U, Gilad R, et al. Intravenous immunoglobulin treatment in multiple sclerosis. Effect on relapses. Neurology 1998; 50:398.
  151. Sorensen PS, Wanscher B, Jensen CV, et al. Intravenous immunoglobulin G reduces MRI activity in relapsing multiple sclerosis. Neurology 1998; 50:1273.
  152. Lewańska M, Siger-Zajdel M, Selmaj K. No difference in efficacy of two different doses of intravenous immunoglobulins in MS: clinical and MRI assessment. Eur J Neurol 2002; 9:565.
  153. Noseworthy JH, O'Brien PC, Weinshenker BG, et al. IV immunoglobulin does not reverse established weakness in MS. Neurology 2000; 55:1135.
  154. Goodin DS, Frohman EM, Garmany GP Jr, et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 2002; 58:169.
  155. Fazekas F, Lublin FD, Li D, et al. Intravenous immunoglobulin in relapsing-remitting multiple sclerosis: a dose-finding trial. Neurology 2008; 71:265.
  156. Brunmark C, Runström A, Ohlsson L, et al. The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol 2002; 130:163.
  157. Jönsson S, Andersson G, Fex T, et al. Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem 2004; 47:2075.
  158. Comi G, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 2012; 366:1000.
  159. He D, Han K, Gao X, et al. Laquinimod for multiple sclerosis. Cochrane Database Syst Rev 2013; :CD010475.
  160. Vollmer TL, Sorensen PS, Selmaj K, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol 2014; 261:773.
  161. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008; 358:676.
  162. Alping P, Frisell T, Novakova L, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol 2016; 79:950.
  163. Salzer J, Svenningsson R, Alping P, et al. Rituximab in multiple sclerosis: A retrospective observational study on safety and efficacy. Neurology 2016; 87:2074.
  164. He D, Guo R, Zhang F, et al. Rituximab for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2013; :CD009130.
  165. Atkins HL, Freedman MS. Hematopoietic stem cell therapy for multiple sclerosis: top 10 lessons learned. Neurotherapeutics 2013; 10:68.
  166. Burt RK, Balabanov R, Han X, et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA 2015; 313:275.
  167. Hauser SL. Hematopoietic stem cell transplantation for MS: extraordinary evidence still needed. JAMA 2015; 313:251.
  168. Nash RA, Hutton GJ, Racke MK, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol 2015; 72:159.
  169. Atkins HL, Bowman M, Allan D, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet 2016; 388:576.
  170. Saccardi R, Freedman MS, Sormani MP, et al. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. Mult Scler 2012; 18:825.