What makes UpToDate so powerful?

  • over 10000 topics
  • 22 specialties
  • 5,700 physician authors
  • evidence-based recommendations
See more sample topics
Find Patient Print
0 Find synonyms

Find synonyms Find exact match

Concussion in children and adolescents: Management
UpToDate
Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
Concussion in children and adolescents: Management
All topics are updated as new evidence becomes available and our peer review process is complete.
Literature review current through: Nov 2016. | This topic last updated: Nov 08, 2016.

INTRODUCTION — This topic will discuss the management of concussion in children and adolescents. The clinical manifestations and diagnosis of concussion in children, the sideline evaluation of concussion, concussions and traumatic brain injury in adults, and postconcussion syndrome are discussed separately:

(See "Concussion in children and adolescents: Clinical manifestations and diagnosis".)

(See "Sideline evaluation of concussion".)

(See "Concussion and mild traumatic brain injury".)

(See "Postconcussion syndrome".)

CLINICAL MANIFESTATIONS AND DIAGNOSIS — The clinical manifestations and diagnosis of concussions in children and adolescents are discussed in detail separately. (See "Concussion in children and adolescents: Clinical manifestations and diagnosis".)

MANAGEMENT — The management of concussions in children and adolescents is based upon observational studies in high school and college athletes, clinical experience, and consensus guidelines [1-6]. Limited evidence is available for the management of concussions in children under 12 years of age and in patients who sustain concussion by mechanisms other than sports. Although this topic focuses on sport-related concussions, the principles of management are the same for children and adolescents who sustain concussions from blunt head injury by other mechanisms.

This discussion assumes that the clinician has made a firm diagnosis of concussion and that serious injury has been excluded. (See "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Clinical manifestations' and "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Diagnosis'.)

However, some concussions are dramatic, resulting in loss of consciousness, convulsions, gross imbalance, or other obvious signs of injury [7,8]. In such cases, clinicians should immediately immobilize the cervical spine, assess for emergent conditions and other coexisting injuries, and treat according to the principles of Advanced Trauma Life Support (figure 1). (See "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Acute or emergency department assessment' and "Approach to the initially stable child with blunt or penetrating injury", section on 'Blunt trauma'.)

Initial approach — In young athletes and those with concussions from other mechanisms (eg, motor vehicle collision or fall), initial management focuses on avoidance of additional head injury through removal from competition (if applicable), restriction of physical activity, and neurocognitive rest. (See 'Management' above.)

Cognitive and physical rest are the primary interventions for concussion [3-6,9-11]. The timing for return to school and return to competition vary from patient to patient depending upon their individual clinical course. Some students who become asymptomatic can return to school immediately.

Anticipatory guidance with education of the patient and parents or legal guardians regarding concussion, including the signs and symptoms, effects on cognition, and typical duration of recovery is also an integral component of clinical management [5]. Because concussion may have no outward sign of injury, friends, teammates, teachers, coaches, and family members may not feel the diagnosis is legitimate and may pressure athletes into excessive physical and cognitive exertion. Education regarding concussion helps to mitigate this stress and to improve compliance with follow-up. As an example, in a multicenter observational study of 354 children (mean age 11 years) undergoing evaluation for concussion in pediatric emergency departments, provision of specific and detailed concussion discharge instructions significantly improved patient follow-up [12].

Although small observational studies suggest that athletes suffering from concussions who engage in very high levels of cognitive and physical activity have longer recovery times than those who engaged in low to moderate levels of activity [11,13], care should be taken to prevent physical deconditioning and social isolation in patients with atypical recovery and prolonged symptoms. Those same studies suggest that low levels of activity are not harmful [11,13].

Prevent additional injury — Expert consensus indicates that any child or adolescent with a suspected sport-related concussion should be removed from further competition that day [3,4,6]. The athlete should undergo additional evaluation with a licensed practitioner to determine if a concussion has occurred. If a concussion is diagnosed, the athlete should not return to play until a full recovery is evident. (See 'Return to play (RTP)' below.)

In addition to removal from organized athletic activities, children and adolescents recovering from concussions should also avoid any recreational activities that may result in a second head injury (eg, cycling, skateboarding, ice skating, or climbing) until they are cleared for competition.

During recovery, athletes suffering from concussions may be particularly vulnerable to worsening symptoms, additional concussions, or potential catastrophic outcomes, such as second impact syndrome if repeated injury occurs. Animal models and observational studies in humans suggest that these additional injuries may occur even with relatively low energy collisions [14-20].

Similarly, patients with concussions caused by other mechanisms should avoid all activities that would place them at risk for additional blunt head trauma during their recovery.

This window of increased brain vulnerability and danger of potentially catastrophic head injury has also been demonstrated in observational human studies and animal models [15-18,21,22]. As an example, in a case series of 94 incidents of severe head injury while playing American football, 42 percent of athletes had sustained a previous head injury during the same season and almost 40 percent were playing with residual neurologic symptoms at the time of severe head injury [14]. The incidence of injury was significantly higher among high school athletes when compared with college athletes (risk ratio 3.3), and 9 percent of all athletes died. Thus, although rare, serious head injury and death are associated with continued competition too soon after a mild head injury.

Physical rest — We suggest that young athletes with sport-related concussion and children and adolescents with concussions from other causes adhere to full physical rest until the following criteria are fulfilled:

No symptoms of concussion (table 1) or return to baseline on standardized assessment tools, such as the Sport Concussion Assessment Tool version 3 (SCAT 3), including the tool designed for children ages 5 to 12 years (Child-SCAT3) or the Standardized Assessment of Concussion (table 2 and table 3). (See "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Standardized sideline assessments' and "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Preparticipation assessments'.)

Normal balance or return to baseline on standardized assessment (eg, the Balance Error Scoring System (picture 1)). (See "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Standardized sideline assessments'.)

During this period of physical rest, activities of normal daily living are permitted but those that raise the heart rate should be avoided.

Although the duration of physical rest will vary among individual patients, observational studies of concussed athletes suggest that most will be asymptomatic by seven days after injury, but that neurocognitive recovery, as measured by neuropsychological testing, frequently is not complete for an additional amount of time that ranges from a few days to a week or more [1-4,6,23-25]. Thus, for the majority of athletes, graduated return to play can begin at approximately 10 to 14 days after injury.

This approach to physical rest assumes a normal recovery. In the minority of patients with prolonged symptoms beyond 10 days after injury, we introduce light, sub-symptom threshold aerobic exercise (eg, light stationary bicycling), which can often be tolerated and may improve symptoms [26]. Engaging in this proactive process can be a psychological boost for these patients and may help mitigate the effects of physical deconditioning.

It is important that clinicians, parents and the patient are aware of the importance of proper sleep during this period of physical rest. Lack of exercise can affect energy and appetite, and can quickly influence sleep patterns. Lack of quality sleep will influence daytime energy, concentration, irritability, headaches, and several other symptoms and potentially slow recovery. (See 'Sleep disturbance' below.)

This recommendation for physical rest is primarily based upon expert consensus, animal models, and small human observational studies that suggest physical rest is associated with fewer concussion symptoms, a shorter duration of symptoms, and a lower risk of repeat concussion [6]. In addition, a period of rest and removal from sports or other activities with a high risk for blunt head injury lowers the risk of a catastrophic head injury in a recovering athlete (ie, second impact syndrome). (See 'Prevent additional injury' above.)

Further studies are needed to identify the efficacy of this approach and the degree and duration of rest that is necessary.

Cognitive rest — Our approach to mental activity in children and adolescents with concussion is as follows:

Symptoms worsened by cognitive effort – We suggest that patients who have sustained a concussion, are symptomatic, and have worsening of symptoms by activities such as reading, video games, or screen time avoid all mental activity that makes them feel worse, up to and including absence from school. [6,27]. Social visits both in and out of the home and trips should be limited. During this period of reasonable rest, the child may often engage in light mental activities, such as watching limited amounts of television and family interaction, without exacerbating symptoms [27,28].

However, close follow-up with a pediatrician, sports medicine specialist, or other capable provider is needed to help guide the liberalization of mental activity. Patients can return to school as soon as they can tolerate 30 to 45 minutes of concentration. In our experience, concussed patients typically require one to two days of reasonable rest before returning to school. To avoid the harm of prolonged absence from school, we usually return student athletes to school after a maximum of five days of rest.

Asymptomatic or low-level symptoms – We suggest that patients who are asymptomatic or have low-level symptoms not worsened by routine mental activities receive anticipatory guidance that emphasizes avoidance of cognitive effort that cause a resumption or worsening of symptoms. In our experience, exposure to video games, loud music, prolonged screen time, or mental activities requiring high levels of focus and concentration (eg, taking standardized tests) are activities that frequently induce symptoms and need to be curtailed for a few days after injury. These patients may continue to attend school.

All children and adolescents returning to school after a concussion warrant monitoring of symptoms and academic adjustments (eg, rest break in the nurse's office or reduced class time (table 4)), as needed, if symptoms are exacerbated by schoolwork or the school environment [27]. (See 'Return to learn' below.)

Cognitive rest is designed to avoid overtaxing a functionally injured brain and to prevent metabolic overload [6,27,28]. The recommendation for cognitive rest after a concussion is based upon expert consensus, clinical experience, and the following observational evidence:

In a prospective observational study of 335 athletes (age 8 to 23 years) with delayed recovery (mean duration of symptoms 43 days) and undergoing treatment by pediatric sports medicine specialists, those patients with the highest degree of cognitive activity after a concussion took the longest time to recover as determined by a cognitive activity scale that was not validated. However, light to moderate cognitive demand was not associated with prolongation of symptoms [11].

Small observational studies show that cognitive "overexertion" is frequently associated with worsening symptoms and that the risk for overexertion, as measured by neurocognitive tests, persists for some time after injury. As an example, in 72 students who sustained concussions, 80 percent reported increased symptoms of concussion after cognitive exertion one month after injury [28]. In a separate study of 20 concussed athletes who were matched to 20 control athletes, measures of executive function were disrupted in the concussed athletes relative to controls for two weeks to two months after injury [29].

In one small observational study of 49 high school and college athletes who were prescribed at least one week of cognitive and physical rest from 1 to 30 days after a concussion, cognitive and physical rest was associated with significantly improved neurocognitive function based upon a standardized assessment tool or neuropsychological testing and a decrease in concussion symptoms [30]. Improvement was seen regardless of the time between injury and the institution of rest.

On the other hand, the proper degree of cognitive rest and the optimal duration varies from patient to patient. Some experts have noted that prolonged rest with absence from school may be harmful in children and adolescents with concussions, especially in patients with lengthy recoveries [31,32]. Limited evidence also indicates a potential for worsening symptoms in patients with varying degrees of concussion, who are prescribed overly restrictive rest. As an example, in a trial of 99 patients aged 11 to 22 years who were diagnosed with a concussion after pediatric emergency department evaluation (36 percent with loss of consciousness), all subjects reduced physical activity and one group was assigned to strict cognitive rest for five days while the other was assigned to usual care (one to two days of rest followed by gradual return to full cognitive activities) [31,33]. Longer cognitive rest was associated with significantly more daily postconcussive symptoms during the 10 days of follow-up compared with usual care. Strict rest for five days was also associated with an increased duration of symptoms relative to usual care which was not significant (median of seven versus four days respectively, p = 0.08). There was no clinically significant difference in neurocognitive and balance outcomes at 3 and 10 days after injury as measured by computerized neurocognitive testing or the balance error scoring system (BESS).

Taken together, the available evidence suggests that avoidance of mental activities that worsen symptoms in concussed patients followed by a gradual resumption of these activities with close patient reassessment by a clinician with expertise in managing pediatric concussions is most likely to result in the shortest duration of symptoms and most timely return to full cognitive function [31].

Symptom management — Pediatric patients may experience a variety of symptoms while recovering from concussions. In most instances, adherence to physical and cognitive rest will improve symptoms [5,6,34]. Although briefly prescribed medications for symptomatic treatment may be helpful, clinicians should avoid relying too heavily upon pharmaceutical therapies. Under no circumstance, should medications be used to mask symptoms with the goal of permitting an athlete to compete. In addition, athletes should not return to play until they are symptom-free while off medications that are prescribed to treat concussion. (See 'Pharmacotherapy' below.)

Headache — Headache is the most common symptom following a concussion (see "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Clinical manifestations'). Recurrent headaches are also an important marker for physical or cognitive overexertion during recovery. While acetaminophen or nonsteroidal antiinflammatory drugs (NSAIDs, such as ibuprofen) are reasonable adjuncts to physical and cognitive rest during the first few days after injury, they may be ineffective and rebound headaches can complicate treatment and recovery [5,35-38]. Therefore, their prolonged or frequent use beyond the first few days after injury should be discouraged.

Patients with a prior history of migraine headaches may develop a migraine that is triggered by a minor head injury. Initiation of abortive therapy is appropriate if the headache is typical of prior migraine episodes. (See "Acute treatment of migraine in children", section on 'Pharmacologic therapy'.)

In patients with prolonged headache, the clinician should ensure that there is not a cervicogenic component. Patients with cervicogenic headaches warrant referral for physical therapy and the headache should not be a justification for absence from school. However, these patients should not return to play until the headache resolves. (See "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Primary headache'.)

Nausea — Ondansetron is a reasonable therapy for nausea for the first one to two days after a concussion, especially if it is interfering with eating or drinking. However, ondansetron can cause headaches, drowsiness, and dizziness that may exacerbate other symptoms of concussion. Thus, caregivers should be instructed to stop ondansetron if it makes their child feel worse.

Phenothiazine antiemetics (eg, metoclopramide or promethazine) should be avoided in children and adolescents due to the potential adverse effects of drowsiness, orthostatic hypotension, and in younger patients, acute dystonic reaction.

Sleep disturbance — Children and adolescents with concussion frequently have signs of sleep disturbance including daytime drowsiness, difficulty falling asleep, and difficulty staying asleep. Emphasis on proper sleep hygiene provides the best initial treatment for these patients (table 5). However, physical rest precludes exercise as a component of sleep hygiene for concussed patients. (See "Behavioral sleep problems in children", section on 'Older children and adolescents'.)

Sleep may also be difficult due to symptoms of headache or dizziness. Thus, control of these symptoms may improve sleep as well.

For most patients, sleep will improve with proper sleep hygiene. If pharmacotherapy is necessary because sleep disturbance is prolonging recovery and sleep hygiene has not resulted in improved sleep, then we typically prescribe a trial of melatonin (up to 3 mg in older children and 5 mg in adolescents) [5,39]. The lack of side effects or significant toxicity makes melatonin an attractive choice although efficacy in the setting of concussion is not established. Melatonin is not subject to US Food and Drug Administration (FDA) controls. Thus, preparations may vary in potency and purity.

If melatonin is not effective, then consultation with a pediatric sleep specialist, pediatric neurologist, or pediatric psychiatrist to identify other therapeutic options is warranted.

Benzodiazepines should be avoided in patients with concussion because of day time sleepiness and memory impairment which hampers the assessment of recovery [5].

Trazodone, a serotonin reuptake inhibitor and antagonist at alpha adrenergic and serotonergic receptors, has been employed with some success for sleep disturbance following traumatic brain injury in adults, but experience in children is limited [39,40]. Furthermore, trazodone is associated with morning hangover and suppresses rapid eye movement (REM) and slow wave sleep.

Dizziness — Dizziness following concussion typically resolves with physical and cognitive rest. For patients with prolonged symptoms, vestibular rehabilitation by a physical therapist may have benefit based upon small observational studies in children and adults [41,42]. (See 'Persistent symptoms' below.)

Worsening symptoms — Although the signs and symptoms of concussion can often wax and wane or be exacerbated by either physical or cognitive exertion [3,43], patients who are adherent to prescribed physical and cognitive rest after a concussion should show gradual improvement in their symptoms. Worsening of their symptoms despite appropriately following a regimen of physical and cognitive rest should prompt the clinician to evaluate for other potential diagnoses and, if serious intracranial injury cannot be excluded, neuroimaging.

Persistent symptoms — For patients with prolonged post-concussion symptoms (eg, lasting more than two to three weeks), a multidisciplinary approach is warranted that includes treatment managed by a sports medicine specialist or physician with similar expertise, physical therapist, neuropsychologists, and, in selected patients whose symptoms persist for a month or more, behavioral management by a psychologist or psychiatrist [44]. (See 'Indications for subspecialty referral or consultation' below.)

In a randomized trial of 49 children (11 to 17 years of age) with concussion and persistent symptoms for one month or longer after a sports-related concussion, collaborative treatment consisting of care management, cognitive-behavioral therapy, and, when needed, psychopharmacologic consultation was associated with significant reductions in postconcussive and depression symptoms at six months when compared to usual treatment (87 versus 58 percent of patients without high levels of postconcussive symptoms and 78 versus 46 percent of patients with ≥50 percent reduction in depression symptoms, respectively) [45].

Although debated, the following features of the initial presentation may be associated with prolonged recovery from concussion [46]:

More severe or numerous initial signs or symptoms (ie, increased symptom load) [47]

Loss of consciousness for longer than one minute

Vestibular symptoms (ie, dizziness, vertigo, abnormal gait, or abnormal gaze stability) [48]

Delayed symptom onset [49]

Number of prior concussions [49]

Premorbid conditions (eg, prior concussion, learning disorder, or psychiatric disorder [eg, depression]) [23,49,50]

Often, the symptoms can be broken into categories that permit an organized approach to symptom management:

Physical or somatic symptoms – Headache is a frequent complaint in children and adolescents with persistent symptoms and may be severe enough to be debilitating [34]. Specialty approach to posttraumatic headaches may include several of the following [5,44]:

Avoidance of nonsteroidal antiinflammatory medications beyond short term, occasional use to prevent the development of rebound headaches

Specific therapy targeted at the type of headache (eg, tension versus migraine headache)

Nonpharmacologic therapy, such as biofeedback and psychotherapy

Vestibular symptoms (eg, balance problems, dizziness, blurred vision) – Patients with vestibular symptoms may benefit from vestibular therapy consisting of progressively applied exercises monitored by a physical therapist [35,41,51,52].

Psychological or emotional symptoms (eg, irritability, sadness, anxiety, emotional lability) – The direct symptoms of concussion, in addition to the emotional stress related to the restriction placed on activity during recovery, can combine to contribute to depressive symptoms [5]. Prolonged periods of physical and cognitive inactivity can result in symptoms, such as depression, fatigue, headaches, decreased energy, anhedonia, difficulty falling asleep, and others and should be avoided. Indeed, many of these symptoms overlap with those of concussion, making it difficult at times to distinguish between symptoms directly attributable to concussion and those attributable to the physical and cognitive restrictions taken during the course of treatment.

In the minority of patients with prolonged symptoms beyond 10 days after injury, we introduce light, sub-symptom threshold aerobic exercise (eg, light stationary bicycling), which can often be tolerated and may improve symptoms. Engaging in this proactive process can be a psychological boost for these patients and may help mitigate the effects of physical deconditioning. (See 'Physical rest' above.)

However, strenuous physical and cognitive activities are associated with prolongation of symptoms as well and are also contraindicated until the patient has fully recovered. (See 'Prolongation of symptoms' below.)

Psychologic assessment and counseling by a psychologist or psychiatrist with an emphasis on the temporary nature of the restrictions and the good prognosis is appropriate for athletes who continue to experience these symptoms. If prolonged, initiation of antidepressant medication by a psychiatrist may be warranted.

Cognitive symptoms (eg, confusion, feeling in a fog, difficulty remembering, difficulty concentrating) – Attention to somatic, vestibular, psychological, and sleep symptoms associated with prolonged concussion frequently secondarily improves cognitive symptoms. Although pharmacologic therapy has shown some success in improving neurocognitive function in small observational studies, its use for this purpose should be confined to clinicians who are experienced in the management of sports-related concussion or concussive brain injury and who are familiar with the risk-benefit profile of the medications [5,44]. Furthermore, accelerated recovery from a concussion has not been shown [53]. Academic adjustments or accommodations are typically instituted for these types of symptoms. (See 'Return to learn' below.)

Sleep disruption (eg, trouble falling asleep, sleeping more than usual) – The management of sleep disruption should start with proper sleep hygiene recommendations (table 5) [5,36,40,54]. Carefully monitored physical exercise and return to learning may also help to normalize the athlete's schedule and positively impact sleep. In addition, melatonin use as described above provides pharmacologic therapy that has little to no risk. Prolonged use of sedatives should be avoided. (See 'Sleep disturbance' above.)

Pharmacotherapy — No medications have been proved to speed recovery from concussion or prevent long term effects from injury.

The following conditions should be met before a trial of medication is provided:

The patient's symptoms have exceeded the typical recovery period for a sport-related concussion.

The symptoms are negatively affecting the patient's quality of life to such a degree that the possible benefit of treatment outweighs the potential risks of the medication being considered.

The clinician caring for the patient is knowledgeable and experienced in the assessment and management of sport-related concussion or concussive brain injury in general.

A discussion of specific medications for the management of concussion other than those mentioned above is beyond the scope of this topic but is reviewed in the reference [5].

INDICATIONS FOR SUBSPECIALTY REFERRAL OR CONSULTATION — Many young athletes with sport-related concussions are managed by athletic trainers or primary care physicians. Children and adolescents with concussion caused by other mechanisms also commonly follow-up with their primary care provider. Patients with the following findings warrant referral to a physician with specific expertise in managing pediatric concussion (eg, sports medicine specialist, physiatrist or neurologist):

Prolonged symptoms of concussion (eg, persistent symptoms 10 days after injury)

Patients with multiple concussions occurring with progressively less force and/or associated with more intense symptoms or greater cognitive dysfunction (see 'Retirement from contact sports' below)

Uncertain diagnosis of concussion

RETURN TO LEARN — Once patients can concentrate on a task and tolerate visual and auditory stimulation for 30 to 45 minutes (or approximately the length of the average school period), they may return to school with academic adjustments, as needed, until full recovery.

Adjustments may include [27,37,55]:

Limited course load

Shortened classes or school day

Increased rest time

Aids for learning (eg, class notes or supplemental tutoring)

Postponement of high-stakes testing (eg, the Scholastic Aptitude Test [SAT] or Advanced Placement tests)

A wide variety of other potential adjustments may also be offered depending upon the symptoms that are most troublesome (table 4). Hence, the return to school must be individualized and requires monitoring by the parent or legal guardian, school faculty, and managing physician.

Notifying the school academic team (teacher, school counselor, school nurse or physician, physical education teacher, school coach, athletic trainer, and school administrator) of the presence of the concussion is the responsibility of the parent or legal guardian [27]. They must also sign a release of information for school personnel to be able to coordinate appropriate adjustments as recommended by the primary clinician managing the concussion. In general, participation in school-sponsored extra-curricular activities, including athletics, is typically not allowed until the athlete is fully back to school.

For athletes with prolonged symptoms lasting beyond three weeks, academic accommodations, as determined by the school system's regulations, polices, and practices, may be needed rather than adjustments [27]. As opposed to academic adjustments, academic accommodations are designed to provide a specific individualized education plan for student instruction that will address specifically identified learning deficits based upon professional (eg, psychological or neuropsychological) testing. For most patients, referral to a specialist (eg, sports medicine specialist, neurologist, or neurosurgeon) with expertise in managing concussions is warranted for such patients. (See 'Indications for subspecialty referral or consultation' above.)

Accommodations are also intended to keep school work at a manageable level and to permit full recovery. Given the quantitative deficits in cognitive function that occur with concussion, especially in executive function, processing speed, concentration, and memory [50,56-58], such academic support is frequently needed. Students, the school academic team, and parents or legal guardians should work together to keep up with as much current work as tolerable while planning to make up missed work as efficiently as possible after recovery. For patients who suffer prolonged recoveries, plans to make up incomplete work may include assignments during scheduled school breaks or summer vacation [5,37,55,59].

Neuropsychological testing — Because cognitive recovery may lag behind physical recovery, clinicians frequently use neuropsychological testing to help determine when the patient has fully recovered from a concussion.

Both traditional pen-and-paper neuropsychological assessments and computerized neurocognitive assessments have been used for assessing patients [56,60,61]. Each has advantages and disadvantages. Traditional neuropsychological testing is more thorough and can be tailored to meet the needs of each patient. Interpretation by a neuropsychologist permits the assessment of other potential factors that may be affecting test performance. Furthermore, assessment by a neuropsychologist has the added advantage of an additional clinical opinion.

However, pen-and-paper testing typically takes several hours. Also, many patients may not have access to a neuropsychologist. In addition, pen-and-paper testing is relatively costly and health insurance may not cover the cost of testing. Thus, traditional neuropsychological testing is often not a practical approach to measuring and managing cognitive recovery in concussed children and adolescents.

Computerized neurocognitive assessments are convenient (administration time approximately 30 minutes) and permit tests to be administered by other medical personnel after test specific training has been completed. They have become common for assessing and managing pediatric athletes with concussion [1,2,62]. Furthermore, preparticipation baseline testing is much more easily performed for a sports team than traditional pen-and-paper assessments. When selecting a computerized test, it should be one that has shown validity in children and adolescents [6]. (See "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Preparticipation assessments'.)

In patients with prolonged symptoms, medical symptom validity testing is appropriate to ensure that symptoms are not faked or exaggerated [63].

RETURN TO PLAY (RTP) — We suggest that young athletes fully complete the consensus graduated return to play protocol after an individualized period of cognitive and physical rest before clearance for competition.

Prior to returning to full athletic participation, recovered athletes should complete a course of non-contact exercise challenges of gradually increasing intensity [3,4,10]. The graded RTP protocol advances through the following rehabilitation stages: light aerobic exercise, more intensive training, sports-specific exercises, non-contact participation, full practice, and ultimately, game play as shown in the table (table 6).

The following are requirements for children and adolescents to begin the RTP protocol:

Successful return to school.

Symptom-free and off any medications prescribed to treat the concussion.

Normal neurologic examination.

Back at baseline balance and cognitive performance measures. If baseline assessments are unavailable, age-adjusted normative data are available and can be useful in attempting to estimate premorbid levels of functioning for a given athlete. Given the variability in performance between athletes, however, baseline data are ideal. (See "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Preparticipation assessments'.)

Athletes should be symptom-free during and after exertion at a given activity level before progressing to the next level. According to the American Academy of Pediatrics, children and adolescents should remain at each stage of rehabilitation no less than 24 hours before advancing to the next level. Thus, a minimum of five days should pass before consideration of full return to competition [4]. Furthermore, some jurisdictions have legislation requiring a minimum number of symptom-free days prior to returning to play. The clinician should be aware of any such laws or local recommendations.

If there is return of symptoms at any level, the athlete should rest until the symptoms resolve, and then attempt the protocol again beginning at the previous level of symptom-free exertion.

Because of the concern for complications and permanent brain injury that are associated with overly aggressive return to play in children and adolescents, we have athletes younger than 13 years of age and those at higher risk (eg, longer duration of symptoms, higher numbers of previous concussions, or returning to higher risk sports) engage in a longer symptom-free waiting period before returning to play. For instance, a 12 year-old athlete recovering from a second lifetime concussion, with symptoms that took longer than four weeks to resolve should consider one week of success at each of the stages of exercise progression before returning to a high risk sport, such as American football or ice hockey. Some clinicians have advocated a requirement of equal number of symptom-free weeks as there were symptomatic weeks during recovery before return to contact practice and play is considered.

Thus, the plan for RTP after a concussion should be individualized, gradual, and progressive. This progression permits the athlete to restore confidence, sharpen skills, and simulate sports-specific activity in a controlled setting before entering competitive play. The final decision for RTP should be made by a licensed clinical provider with experience in the evaluation and management of sports-related concussions. The prognosis for RTP cannot be easily predicted by the presenting features of a concussion. Full RTP exercise progression may take days, weeks, or months although most athletes will be cleared to play within one month [1,2]. (See 'Prognosis' below.)

RETIREMENT FROM CONTACT SPORTS — Decisions regarding retirement from contact sports are difficult to make and should be done in conjunction with a clinician experienced in the assessment and management of sport-related concussions. Ancillary testing, such as neuroimaging or formal neuropsychological testing, may also be helpful.

Although the number of diagnosed concussions is an important factor when considering retiring from contact and collision sports, it is not the only factor. Other items to consider include [64,65]:

Are concussions occurring with progressively less force? (ie, is the athlete exhibiting a particularly low threshold for injury)

Are the symptoms experienced after concussion of increasing intensity?

Is the cognitive dysfunction experienced after a concussion becoming more severe?

Is the duration of recovery progressively increasing?

Is the sport and position high-risk?

Retirement from contact sports is usually indicated for patients with structural brain abnormality on neuroimaging or nonresolving or prolonged neurocognitive deficits by neuropsychological or other functional testing (eg, functional magnetic resonance imaging).

Retirement from contact sports is often appropriate for patients with the following findings:

Increased recovery times for successive injuries

A pattern of decreased threshold for repeat concussions, especially when associated with persistent prolonged symptoms

Multiple concussion over the course of an athletic career

PROGNOSIS — Most pediatric patients will recover readily from concussions [1-3,23,66]. As an example, over 90 percent of high school athletes who sustain a sport-related concussion and are seen by a medical provider will be symptom-free and cleared for play within one month of injury [1,2].

However, some patients will take several months to recover from their concussions. Many factors have been proposed as predictive of prolonged recovery from a concussion including a history of prior concussions, female sex, history of migraines, history of learning disabilities, recurrent concussion soon after recovery, or degree of symptoms after a concussion [3,6,23]. Of these, observational evidence suggests that increased severity of symptoms at presentation is the primary factor associated with prolonged recovery from a concussion [11,47].

COMPLICATIONS — While most concussions readily resolve, complications may occur, especially when concussions are not recognized or are sustained multiple times over the course of an athletic career, including prolongation of symptoms, second impact syndrome, and chronic traumatic encephalopathy.

Prolongation of symptoms — Expert opinion and clinical experience suggest that strenuous cognitive and physical exertion during the earlier parts of recovery may prolong or exacerbate the symptoms of concussion [11,13]. As an example, in an observational study of 95 teenage athletes, high levels of activity after a concussion was associated with poorer neurocognitive performance (eg, verbal and visual memory, visual motor speed, and reaction time) [13].

Second impact syndrome — Second impact syndrome refers to death or devastating neurological injury attributable to massive swelling of the brain in athletes who sustain a second head injury prior to full recovery from a concussion. Although some debate exists about whether or not a prior concussion is necessary, or whether the resultant edema can be due to a primary injury alone, young athletes who return to contact or collision sports while still recovering from a concussion may be at significant risk and should not return to play or engage in other activities that place them at increased risk of head injury (eg, bicycle riding or skateboarding) until fully recovered. (See 'Prevent additional injury' above and "Concussion and mild traumatic brain injury", section on 'Second impact syndrome'.)

Chronic traumatic encephalopathy — Chronic traumatic encephalopathy (CTE) refers to permanent changes in mood, behavior, cognition, somatic symptoms, and, in severe cases, dementia or Parkinsonian symptoms occurring in patients with multiple concussions sustained over the course of an athletic career. CTE has been described in boxers, American football players, and military personnel exposed to combat-related blast injuries. (See "Concussion and mild traumatic brain injury", section on 'Chronic traumatic encephalopathy'.)

Based upon animal studies and observational evidence from adult athletes, concern exists that young athletes, who sustain repetitive head impacts and multiple concussions, may be at risk for neurodegenerative disease, such as CTE or Alzheimer disease later in life [67]. (See "Concussion and mild traumatic brain injury", section on 'Chronic traumatic encephalopathy'.)

Avoidance of CTE is frequently a rationale for advising retirement from contact and collision sports. (See 'Retirement from contact sports' above.)

PREVENTION — Evidence is limited regarding specific interventions to prevent sport-related concussion. According to the Institute of Medicine's report on "Sports-related Concussions in Youth: Improving the Science, Changing the Culture," preliminary evidence supports concussion education programs, age limits on body-checking (ice hockey) or tackling (American football), and proper enforcement of rules and fair play among young athletes as follows [65]:

Education – Studies in young athletes and youth coaches indicate that educational programs are associated with increased attainment of knowledge about the recognition and seriousness of concussions [65]. However, change in behavior has not been well studied and persistent tendencies among high school athletes to potentially hide symptoms so as not to appear weak or let the team down have been reported. For example, in a survey of 167 high school athletes, 60 percent of concussions events were not disclosed to an adult [68]. Similarly, less than half of 229 high school American football players who had a concussion during the previous season reported the injury to a trainer, physician, or coach [69]. Furthermore, in a prospective observational study approximately 40 percent of 59 elite female soccer players played despite symptoms of concussion and 56 percent never saw a qualified health professional [25]. Factors associated with an increased likelihood of reporting a concussion included approval of such reporting by peers, coaches, and parents; a positive view of reporting by the individual, and ease of reporting [70].

Anticipatory guidance by the primary care physician is another method of education for the student athlete and parents. The Head's Up program is an excellent resource that has been developed by experts in head injury and the Centers of Disease Control and Prevention to help educate health care providers, athletes, coaches, school staff and parents about concussion.

Age limits on types of physical contact – Observational studies suggest that limiting certain types of contact until an older age also reduces concussion while collision is forbidden. As an example, lowering the age for body checking in youth hockey from 11 to 9 years of age was associated with a significant increase in concussion from 4 to 22 concussions during one season of play (odds ratio [OR] 10.1) [71]. The American Academy of Pediatrics recommends that body checking not be permitted in youth hockey until the age of 15 years [72]. Similar age restrictions on tackling in American football have also been proposed although not widely implemented [73]. Evidence is lacking concerning whether restrictions on tackling can reduce concussions.

Fair play – Observational studies of youth and high school sports show that adherence to the rules of the sport and encouragement of fair play is associated with decreased injuries, including concussions [65]. For example, greater accelerations of the head and many concussions in sports occur during illegal play, when athletes do not anticipate the collision, or when athletes use improper technique [74-76]. Thus, proper coaching technique and adherence to the rules of play may reduce the overall incidence of concussion [77,78].

By contrast, existing evidence does not support the ability for equipment, such as helmets or mouth guards to prevent concussion [65]. Furthermore, injury risk rating systems provided by equipment manufacturers have not been shown to correlate with actual concussion risk. Although new devices are available that can noninvasively monitor the number and magnitude of head impacts, further study is needed to determine if this information can identify players that should be removed from competition [65].

However, the associated reduction of catastrophic brain injuries for athletes who wear helmets and of dental or facial injuries for athletes who wear mouth guards or facial protection warrant their continued promotion. Similar evidence also supports the use of helmets when performing high risk activities outside of organized sports (eg, climbing, riding bicycles or motorcycles, or skiing) and the use of seat belts or appropriate car seats to protect children and adolescents during motor vehicle collisions. (See "Evaluation and management of dental injuries in children", section on 'Mouthguards' and "Bicycle injuries in children: Prevention", section on 'Bicycle helmet use'.)

In theory, strengthening of the muscles of the neck and posterior shoulders might reduce the risk of sports-related concussion by reducing acceleration during direct or indirect head trauma [75,79-81]. However, no studies have documented benefit from this approach and recommending neck strengthening exercises may be counterproductive because young athletes may believe they are protected against concussion by doing these exercises and may engage in dangerous play.

INFORMATION FOR PATIENTS — UpToDate offers two types of patient education materials, "The Basics" and "Beyond the Basics." The Basics patient education pieces are written in plain language, at the 5th to 6th grade reading level, and they answer the four or five key questions a patient might have about a given condition. These articles are best for patients who want a general overview and who prefer short, easy-to-read materials. Beyond the Basics patient education pieces are longer, more sophisticated, and more detailed. These articles are written at the 10th to 12th grade reading level and are best for patients who want in-depth information and are comfortable with some medical jargon.

Here are the patient education articles that are relevant to this topic. We encourage you to print or e-mail these topics to your patients. (You can also locate patient education articles on a variety of subjects by searching on "patient info" and the keyword(s) of interest.)

Basics topic (see "Patient education: Concussion in children and adolescents (The Basics)")

ADDITIONAL RESOURCES — Additional educational materials from the Centers for Disease Control and Prevention are available for clinicians, athletes, parents, school staff, and coaches at Heads Up: Concussion in Youth Sports and for clinicians at Heads Up: Brain Injury in Your Practice.

Furthermore, the Acute Concussion Evaluation (ACE) tool that is part of these educational materials has been adapted for use in the emergency department as described in the following reference [12].

SUMMARY AND RECOMMENDATIONS

Any child or adolescent with a suspected sport-related concussion should be removed from further competition that day. The athlete should undergo further evaluation with a licensed practitioner to determine if a concussion has occurred. If a concussion is diagnosed, the athlete should not return to play until a full recovery is evident.

In addition to removal from organized athletic activities, children and adolescents recovering from concussions should also avoid any recreational activities that may result in a second head injury (eg, cycling, skateboarding, ice skating, or climbing) until they are cleared for competition. Similarly, patients with concussions caused by other mechanisms should avoid all activities that would place them at risk for additional blunt head trauma during their recovery. (See 'Prevent additional injury' above and "Sideline evaluation of concussion".)

We suggest that patients with concussion adhere to full physical rest until the following criteria are fulfilled (Grade 2C):

No symptoms of concussion (table 1) or return to baseline on standardized assessment tools, such as the Sport Concussion Assessment Tool version 3 (SCAT 3), including the tool designed for children ages 5 to 12 years (Child-SCAT3) or the Standardized Assessment of Concussion (table 2 and table 3) (see "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Standardized sideline assessments' and "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Preparticipation assessments')

Normal balance or return to baseline on standardized assessment (eg, the Balance Error Scoring System) (picture 1) (see "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Preparticipation assessments')

During this period of physical rest, activities of normal daily living are permitted, but those that raise the heart rate should be avoided. (See 'Physical rest' above.)

We suggest that patients who have sustained a concussion, are symptomatic, and have worsening of symptoms by activities such as reading, video games, or screen time avoid all mental activity that makes them feel worse, up to and including absence from school (Grade 2C). Social visits both in and out of the home and trips should be limited. During this period of reasonable rest, the child may often engage in light mental activities, such as watching limited amounts of television and family interaction, without exacerbating symptoms. (See 'Cognitive rest' above.)

In symptomatic patients, close follow-up with a pediatrician, sports medicine specialist, or other capable provider is needed to help guide the liberalization of mental activity. Patients can return to school as soon as they can tolerate 30 to 45 minutes of concentration. In our experience, concussed patients typically require one to two days of reasonable rest before returning to school. To avoid the harm of prolonged absence from school, we usually return student athletes to school after a maximum of five days of cognitive rest. (See 'Cognitive rest' above and 'Return to learn' above.)

We suggest that patients who are asymptomatic or have low-level symptoms not worsened by routine mental activities receive anticipatory guidance that emphasizes avoidance of cognitive effort that cause a resumption or worsening of symptoms (Grade 2C). In our experience, exposure to video games, loud music, prolonged screen time, or mental activities requiring high levels of focus and concentration (eg, taking standardized tests) are activities that frequently induce symptoms and need to be curtailed for a few days after injury. These patients may continue to attend school. (See 'Cognitive rest' above.)

All children and adolescents returning to school after a concussion warrant monitoring of symptoms and academic adjustments (eg, rest break in the nurse's office or reduced class time (table 4)), as needed, if symptoms are exacerbated by schoolwork or the school environment. (See 'Return to learn' above.)

Children and adolescents may experience a variety of symptoms while recovering from concussion. In most instances, adherence to physical and cognitive rest will improve symptoms. Although briefly prescribed medications for symptomatic treatment (eg, acetaminophen or ibuprofen for headache) may be helpful, clinicians should avoid prolonged use of pharmaceutical therapies. Under no circumstance, should medications be used to mask symptoms with the goal of permitting an athlete to compete. (See 'Symptom management' above.)

We suggest that young athletes fully complete the consensus graduated return to play (RTP) protocol (table 6) after an individualized period of cognitive and physical rest before clearance for competition (Grade 2C). The following are requirements for children and adolescents to begin the RTP protocol (see 'Return to play (RTP)' above):

Successful return to school

Symptom-free and off any medications prescribed to treat the concussion

Normal neurologic examination

Back at baseline balance and cognitive performance measures. If baseline assessments are unavailable, age-adjusted normative data are available and can be useful in attempting to estimate premorbid levels of functioning for a given athlete. Given the variability in performance between athletes, however, baseline data are ideal (see "Concussion in children and adolescents: Clinical manifestations and diagnosis", section on 'Preparticipation assessments')

Because cognitive recovery may lag behind physical recovery, neuropsychological testing can also be helpful in determining when the patient has fully recovered from a concussion. (See 'Neuropsychological testing' above.)

Worsening of the patient's symptoms despite appropriately following a regimen of physical and cognitive rest should prompt the clinician to evaluate for other potential diagnoses and, if serious intracranial injury cannot be excluded, neuroimaging. (See 'Worsening symptoms' above.)

Patients with the following findings warrant referral to a physician with specific expertise in managing pediatric concussion (eg, sports medicine specialist, physiatrist or neurologist) (see 'Indications for subspecialty referral or consultation' above):

Prolonged symptoms of concussion (eg, persistent symptoms 10 days after injury)

Patients with multiple concussions occurring with progressively less force and/or associated with more intense symptoms or greater cognitive dysfunction (see 'Retirement from contact sports' above)

Uncertain diagnosis of concussion

Use of UpToDate is subject to the Subscription and License Agreement.

REFERENCES

  1. Meehan WP 3rd, d'Hemecourt P, Collins CL, Comstock RD. Assessment and management of sport-related concussions in United States high schools. Am J Sports Med 2011; 39:2304.
  2. Meehan WP 3rd, d'Hemecourt P, Comstock RD. High school concussions in the 2008-2009 academic year: mechanism, symptoms, and management. Am J Sports Med 2010; 38:2405.
  3. McCrory P, Meeuwisse W, Aubry M, et al. Consensus statement on concussion in sport--the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Clin J Sport Med 2013; 23:89.
  4. Halstead ME, Walter KD, Council on Sports Medicine and Fitness. American Academy of Pediatrics. Clinical report--sport-related concussion in children and adolescents. Pediatrics 2010; 126:597.
  5. Meehan WP 3rd. Medical therapies for concussion. Clin Sports Med 2011; 30:115.
  6. Concussion, recognition, diagnosis, and management. In: Sports-related concussions in youth: Improving the science, changing the culture. Graham R, Rivara FP, Ford MA, Mason Spicer C, Eds. Institute of Medicine of the National Academies, The National Academies Press, Washington, DC, 2013 http://www.iom.edu/Reports/2013/Sports-Related-Concussions-in-Youth-Improving-the-Science-Changing-the-Culture.aspx (Accessed on November 06, 2013).
  7. McCrory PR, Berkovic SF. Concussive convulsions. Incidence in sport and treatment recommendations. Sports Med 1998; 25:131.
  8. McCrory PR, Berkovic SF. Video analysis of acute motor and convulsive manifestations in sport-related concussion. Neurology 2000; 54:1488.
  9. Putukian M. The acute symptoms of sport-related concussion: diagnosis and on-field management. Clin Sports Med 2011; 30:49.
  10. Harmon KG, Drezner J, Gammons M, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Clin J Sport Med 2013; 23:1.
  11. Brown NJ, Mannix RC, O'Brien MJ, et al. Effect of cognitive activity level on duration of post-concussion symptoms. Pediatrics 2014; 133:e299.
  12. Zuckerbraun NS, Atabaki S, Collins MW, et al. Use of modified acute concussion evaluation tools in the emergency department. Pediatrics 2014; 133:635.
  13. Majerske CW, Mihalik JP, Ren D, et al. Concussion in sports: postconcussive activity levels, symptoms, and neurocognitive performance. J Athl Train 2008; 43:265.
  14. Boden BP, Tacchetti RL, Cantu RC, et al. Catastrophic head injuries in high school and college football players. Am J Sports Med 2007; 35:1075.
  15. Meehan WP 3rd, Zhang J, Mannix R, Whalen MJ. Increasing recovery time between injuries improves cognitive outcome after repetitive mild concussive brain injuries in mice. Neurosurgery 2012; 71:885.
  16. Longhi L, Saatman KE, Fujimoto S, et al. Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery 2005; 56:364.
  17. Vagnozzi R, Tavazzi B, Signoretti S, et al. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment--part I. Neurosurgery 2007; 61:379.
  18. Laurer HL, Bareyre FM, Lee VM, et al. Mild head injury increasing the brain's vulnerability to a second concussive impact. J Neurosurg 2001; 95:859.
  19. Saunders RL, Harbaugh RE. The second impact in catastrophic contact-sports head trauma. JAMA 1984; 252:538.
  20. Cantu Rc, Voy R. Second impact syndrome a risk in any contact sport. Phys Sportsmed 1995; 23:27.
  21. Thomas M, Haas TS, Doerer JJ, et al. Epidemiology of sudden death in young, competitive athletes due to blunt trauma. Pediatrics 2011; 128:e1.
  22. Eisenberg MA, Andrea J, Meehan W, Mannix R. Time interval between concussions and symptom duration. Pediatrics 2013; 132:8.
  23. Guskiewicz KM, McCrea M, Marshall SW, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 2003; 290:2549.
  24. Iverson GL, Brooks BL, Collins MW, Lovell MR. Tracking neuropsychological recovery following concussion in sport. Brain Inj 2006; 20:245.
  25. O'Kane JW, Spieker A, Levy MR, et al. Concussion among female middle-school soccer players. JAMA Pediatr 2014; 168:258.
  26. Leddy JJ, Kozlowski K, Donnelly JP, et al. A preliminary study of subsymptom threshold exercise training for refractory post-concussion syndrome. Clin J Sport Med 2010; 20:21.
  27. Halstead ME, McAvoy K, Devore CD, et al. Returning to learning following a concussion. Pediatrics 2013; 132:948.
  28. Sady MD, Vaughan CG, Gioia GA. School and the concussed youth: recommendations for concussion education and management. Phys Med Rehabil Clin N Am 2011; 22:701.
  29. Howell D, Osternig L, Van Donkelaar P, et al. Effects of concussion on attention and executive function in adolescents. Med Sci Sports Exerc 2013; 45:1030.
  30. Moser RS, Glatts C, Schatz P. Efficacy of immediate and delayed cognitive and physical rest for treatment of sports-related concussion. J Pediatr 2012; 161:922.
  31. Meehan WP 3rd, Bachur RG. The recommendation for rest following acute concussion. Pediatrics 2015; 135:362.
  32. Gibson S, Nigrovic LE, O'Brien M, Meehan WP 3rd. The effect of recommending cognitive rest on recovery from sport-related concussion. Brain Inj 2013; 27:839.
  33. Thomas DG, Apps JN, Hoffmann RG, et al. Benefits of strict rest after acute concussion: a randomized controlled trial. Pediatrics 2015; 135:213.
  34. Eisenberg MA, Meehan WP 3rd, Mannix R. Duration and course of post-concussive symptoms. Pediatrics 2014; 133:999.
  35. Leddy JJ, Sandhu H, Sodhi V, et al. Rehabilitation of Concussion and Post-concussion Syndrome. Sports Health 2012; 4:147.
  36. Zafonte RD, Mann NR, Fichtenberg NL. Sleep disturbance in traumatic brain injury: pharmacologic options. NeuroRehabilitation 1996; 7:189.
  37. McGrath N. Supporting the student-athlete's return to the classroom after a sport-related concussion. J Athl Train 2010; 45:492.
  38. Heyer GL, Idris SA. Does analgesic overuse contribute to chronic post-traumatic headaches in adolescent concussion patients? Pediatr Neurol 2014; 50:464.
  39. Owens JA. Pharmacotherapy of pediatric insomnia. J Am Acad Child Adolesc Psychiatry 2009; 48:99.
  40. Rao V, Rollings P. Sleep Disturbances Following Traumatic Brain Injury. Curr Treat Options Neurol 2002; 4:77.
  41. Gurley JM, Hujsak BD, Kelly JL. Vestibular rehabilitation following mild traumatic brain injury. NeuroRehabilitation 2013; 32:519.
  42. Alsalaheen BA, Mucha A, Morris LO, et al. Vestibular rehabilitation for dizziness and balance disorders after concussion. J Neurol Phys Ther 2010; 34:87.
  43. Silverberg ND, Iverson GL, McCrea M, et al. Activity-Related Symptom Exacerbations After Pediatric Concussion. JAMA Pediatr 2016; 170:946.
  44. Makdissi M, Cantu RC, Johnston KM, et al. The difficult concussion patient: what is the best approach to investigation and management of persistent (>10 days) postconcussive symptoms? Br J Sports Med 2013; 47:308.
  45. McCarty CA, Zatzick D, Stein E, et al. Collaborative Care for Adolescents With Persistent Postconcussive Symptoms: A Randomized Trial. Pediatrics 2016.
  46. Treatment and management of prolonged symptoms and post-concussion syndrome. In: Sports-related concussions in youth: Improving the science, changing the culture. Graham R, Rivara FP, Ford MA, Mason Spicer C (Eds). Institute of Medicine of the National Academies, The National Academies Press, Washington, DC, 2013. http://www.iom.edu/Reports/2013/Sports-Related-Concussions-in-Youth-Improving-the-Science-Changing-the-Culture.aspx (Accessed on November 13, 2013).
  47. Meehan WP 3rd, Mannix RC, Stracciolini A, et al. Symptom severity predicts prolonged recovery after sport-related concussion, but age and amnesia do not. J Pediatr 2013; 163:721.
  48. Corwin DJ, Wiebe DJ, Zonfrillo MR, et al. Vestibular Deficits following Youth Concussion. J Pediatr 2015; 166:1221.
  49. Morgan CD, Zuckerman SL, Lee YM, et al. Predictors of postconcussion syndrome after sports-related concussion in young athletes: a matched case-control study. J Neurosurg Pediatr 2015; 15:589.
  50. Collins MW, Grindel SH, Lovell MR, et al. Relationship between concussion and neuropsychological performance in college football players. JAMA 1999; 282:964.
  51. Aligene K, Lin E. Vestibular and balance treatment of the concussed athlete. NeuroRehabilitation 2013; 32:543.
  52. Powers KC, Kalmar JM, Cinelli ME. Recovery of static stability following a concussion. Gait Posture 2014; 39:611.
  53. Beauchamp K, Mutlak H, Smith WR, et al. Pharmacology of traumatic brain injury: where is the "golden bullet"? Mol Med 2008; 14:731.
  54. Arciniegas DB, Anderson CA, Topkoff J, McAllister TW. Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatr Dis Treat 2005; 1:311.
  55. Master CL, Gioia GA, Leddy JJ, Grady MF. Importance of 'return-to-learn' in pediatric and adolescent concussion. Pediatr Ann 2012; 41:1.
  56. Van Kampen DA, Lovell MR, Pardini JE, et al. The "value added" of neurocognitive testing after sports-related concussion. Am J Sports Med 2006; 34:1630.
  57. Lovell MR, Collins MW, Iverson GL, et al. Recovery from mild concussion in high school athletes. J Neurosurg 2003; 98:296.
  58. Schatz P, Pardini JE, Lovell MR, et al. Sensitivity and specificity of the ImPACT Test Battery for concussion in athletes. Arch Clin Neuropsychol 2006; 21:91.
  59. Grady MF, Master CL, Gioia GA. Concussion pathophysiology: rationale for physical and cognitive rest. Pediatr Ann 2012; 41:377.
  60. Broglio SP, Macciocchi SN, Ferrara MS. Neurocognitive performance of concussed athletes when symptom free. J Athl Train 2007; 42:504.
  61. Makdissi M, Darby D, Maruff P, et al. Natural history of concussion in sport: markers of severity and implications for management. Am J Sports Med 2010; 38:464.
  62. Meehan WP 3rd, d'Hemecourt P, Collins CL, et al. Computerized neurocognitive testing for the management of sport-related concussions. Pediatrics 2012; 129:38.
  63. Kirkwood MW, Peterson RL, Connery AK, et al. Postconcussive symptom exaggeration after pediatric mild traumatic brain injury. Pediatrics 2014; 133:643.
  64. Sedney CL, Orphanos J, Bailes JE. When to consider retiring an athlete after sports-related concussion. Clin Sports Med 2011; 30:189.
  65. Protection and prevention strategies. In: Sports-related concussions in youth: Improving the science, changing the culture. Graham R, Rivara FP, Ford MA, Mason Spicer C. Eds. Institute of Medicine of the National Academies, The National Academies Press, Washington, DC, 2013. Available at http://www.iom.edu/Reports/2013/Sports-Related-Concussions-in-Youth-Improving-the-Science-Changing-the-Culture.aspx. Accessed November 18, 2013.
  66. Kerr ZY, Collins CL, Mihalik JP, et al. Impact locations and concussion outcomes in high school football player-to-player collisions. Pediatrics 2014; 134:489.
  67. Consequences of repetitive head impacts and multiple concussions. In: Sports-related concussions in youth: Improving the science, changing the culture. Graham R, Rivara FP, Ford MA, Mason Spicer C. Eds. Institute of Medicine of the National Academies, The National Academies Press, Washington, DC, 2013. Available at http://www.iom.edu/Reports/2013/Sports-Related-Concussions-in-Youth-Improving-the-Science-Changing-the-Culture.aspx. Accessed March 3, 2014.
  68. Register-Mihalik JK, Guskiewicz KM, McLeod TC, et al. Knowledge, attitude, and concussion-reporting behaviors among high school athletes: a preliminary study. J Athl Train 2013; 48:645.
  69. McCrea M, Hammeke T, Olsen G, et al. Unreported concussion in high school football players: implications for prevention. Clin J Sport Med 2004; 14:13.
  70. Register-Mihalik JK, Linnan LA, Marshall SW, et al. Using theory to understand high school aged athletes' intentions to report sport-related concussion: implications for concussion education initiatives. Brain Inj 2013; 27:878.
  71. Cusimano MD, Taback NA, McFaull SR, et al. Effect of bodychecking on rate of injuries among minor hockey players. Open Med 2011; 5:e57.
  72. Safety in youth ice hockey: the effects of body checking. American Academy of Pediatrics. Committee on Sports Medicine and Fitness. Pediatrics 2000; 105:657.
  73. Johnson LS. Return to play guidelines cannot solve the football-related concussion problem. J Sch Health 2012; 82:180.
  74. Lincoln AE, Caswell SV, Almquist JL, et al. Video incident analysis of concussions in boys' high school lacrosse. Am J Sports Med 2013; 41:756.
  75. Mihalik JP, Blackburn JT, Greenwald RM, et al. Collision type and player anticipation affect head impact severity among youth ice hockey players. Pediatrics 2010; 125:e1394.
  76. Mihalik JP, Greenwald RM, Blackburn JT, et al. Effect of infraction type on head impact severity in youth ice hockey. Med Sci Sports Exerc 2010; 42:1431.
  77. Gabbett TJ. Influence of the limited interchange rule on injury rates in sub-elite Rugby League players. J Sci Med Sport 2005; 8:111.
  78. Roberts WO, Brust JD, Leonard B, Hebert BJ. Fair-play rules and injury reduction in ice hockey. Arch Pediatr Adolesc Med 1996; 150:140.
  79. Tierney RT, Sitler MR, Swanik CB, et al. Gender differences in head-neck segment dynamic stabilization during head acceleration. Med Sci Sports Exerc 2005; 37:272.
  80. Viano DC, Casson IR, Pellman EJ. Concussion in professional football: biomechanics of the struck player--part 14. Neurosurgery 2007; 61:313.
  81. Benson BW, McIntosh AS, Maddocks D, et al. What are the most effective risk-reduction strategies in sport concussion? Br J Sports Med 2013; 47:321.
Topic 91282 Version 23.0

All topics are updated as new information becomes available. Our peer review process typically takes one to six weeks depending on the issue.