Official reprint from UpToDate®
www.uptodate.com ©2016 UpToDate®

Complications of the endotracheal tube following initial placement: Prevention and management in adult intensive care unit patients

Robert C Hyzy, MD
Section Editor
Scott Manaker, MD, PhD
Deputy Editor
Geraldine Finlay, MD


Many complications associated with oral endotracheal tubes (ETTs) occur during initial placement. However, ETTs are also associated with complications following placement that can occur during the ensuing days to weeks of intensive care unit (ICU) admission.

This topic reviews basic aspects of prevention and treatment of complications associated with oral ETTs pertinent to the adult ICU patient. Intubation techniques, checking ETT position after initial placement, and immediate complications of ETT as well as complications associated with placement of supraglottic airway devices are discussed separately. (See "Overview of tracheostomy" and "Direct laryngoscopy and endotracheal intubation in adults" and "Rapid sequence intubation for adults outside the operating room" and "Induction agents for rapid sequence intubation in adults" and "Neuromuscular blocking agents (NMBA) for rapid sequence intubation in adults outside the operating room" and "Techniques and devices for airway management for anesthesia: Supraglottic devices (including laryngeal mask airways)".)


This topic review discusses complications that occur in the intensive care unit following appropriate ETT placement. Complications that occur during or following intubation and ETT placement are discussed in detail separately. (See "Direct laryngoscopy and endotracheal intubation in adults".)


Daily endotracheal tube care should be provided to avoid complications associated with ETTs. Daily care includes monitoring ETT cuff pressure, oral and endotracheal suctioning of secretions, and vigilant inspection to ensure that the ETT is rotated regularly and its position maintained. These preventative measures are especially important in those identified as having a difficult airway since reintubation is particularly risky and challenging in this population.  

Maintain optimal cuff pressure — The ETT cuff provides a seal between the ETT and the tracheal wall to ensure accurate delivery of tidal volumes during mechanical ventilation. Overinflation of the cuff can result in tissue ischemia, ulceration, and necrosis of the tracheal wall while underinflation results in the leak of air and oropharyngeal secretions around the ETT cuff which predisposes the patient to inadequate ventilation and aspiration pneumonia, respectively [1]. Thus, setting a cuff pressure that ensures adequate ventilation while concurrently avoiding leak requires careful balance. (See 'Laryngeal injury' below and 'Endotracheal cuff leaks' below.)


Subscribers log in here

To continue reading this article, you must log in with your personal, hospital, or group practice subscription. For more information or to purchase a personal subscription, click below on the option that best describes you:
Literature review current through: Sep 2016. | This topic last updated: Sep 28, 2016.
The content on the UpToDate website is not intended nor recommended as a substitute for medical advice, diagnosis, or treatment. Always seek the advice of your own physician or other qualified health care professional regarding any medical questions or conditions. The use of this website is governed by the UpToDate Terms of Use ©2016 UpToDate, Inc.
  1. Rello J, Soñora R, Jubert P, et al. Pneumonia in intubated patients: role of respiratory airway care. Am J Respir Crit Care Med 1996; 154:111.
  2. Lizy C, Swinnen W, Labeau S, et al. Cuff pressure of endotracheal tubes after changes in body position in critically ill patients treated with mechanical ventilation. Am J Crit Care 2014; 23:e1.
  3. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171:388.
  4. Guyton DC, Barlow MR, Besselievre TR. Influence of airway pressure on minimum occlusive endotracheal tube cuff pressure. Crit Care Med 1997; 25:91.
  5. Henning J, Sharley P, Young R. Pressures within air-filled tracheal cuffs at altitude--an in vivo study. Anaesthesia 2004; 59:252.
  6. Efrati S, Leonov Y, Oron A, et al. Optimization of endotracheal tube cuff filling by continuous upper airway carbon dioxide monitoring. Anesth Analg 2005; 101:1081.
  7. Valencia M, Ferrer M, Farre R, et al. Automatic control of tracheal tube cuff pressure in ventilated patients in semirecumbent position: a randomized trial. Crit Care Med 2007; 35:1543.
  8. Young PJ, Pakeerathan S, Blunt MC, Subramanya S. A low-volume, low-pressure tracheal tube cuff reduces pulmonary aspiration. Crit Care Med 2006; 34:632.
  9. Combes P, Fauvage B, Oleyer C. Nosocomial pneumonia in mechanically ventilated patients, a prospective randomised evaluation of the Stericath closed suctioning system. Intensive Care Med 2000; 26:878.
  10. Shah C, Kollef MH. Endotracheal tube intraluminal volume loss among mechanically ventilated patients. Crit Care Med 2004; 32:120.
  11. Glass C, Grap MJ, Sessler CN. Endotracheal tube narrowing after closed-system suctioning: prevalence and risk factors. Am J Crit Care 1999; 8:93.
  12. Barnason S, Graham J, Wild MC, et al. Comparison of two endotracheal tube securement techniques on unplanned extubation, oral mucosa, and facial skin integrity. Heart Lung 1998; 27:409.
  13. Buckley JC, Brown AP, Shin JS, et al. A Comparison of the Haider Tube-Guard® Endotracheal Tube Holder Versus Adhesive Tape to Determine if This Novel Device Can Reduce Endotracheal Tube Movement and Prevent Unplanned Extubation. Anesth Analg 2016; 122:1439.
  14. Rothaug O, Müller-Wolff A, Kaltwasser R, et al. [Methods for endotracheal tube fixation. Results of a survey of intensive care nurses]. Med Klin Intensivmed Notfmed 2013; 108:507.
  15. Choi YS, Chae YR. [Effects of rotated endotracheal tube fixation method on unplanned extubation, oral mucosa and facial skin integrity in ICU patients]. J Korean Acad Nurs 2012; 42:116.
  16. https://acsearch.acr.org/docs/69452/Narrative.
  17. Krivopal M, Shlobin OA, Schwartzstein RM. Utility of daily routine portable chest radiographs in mechanically ventilated patients in the medical ICU. Chest 2003; 123:1607.
  18. Hejblum G, Chalumeau-Lemoine L, Ioos V, et al. Comparison of routine and on-demand prescription of chest radiographs in mechanically ventilated adults: a multicentre, cluster-randomised, two-period crossover study. Lancet 2009; 374:1687.
  19. Olufolabi AJ, Charlton GA, Spargo PM. Effect of head posture on tracheal tube position in children. Anaesthesia 2004; 59:1069.
  20. Hartrey R, Kestin IG. Movement of oral and nasal tracheal tubes as a result of changes in head and neck position. Anaesthesia 1995; 50:682.
  21. Yap SJ, Morris RW, Pybus DA. Alterations in endotracheal tube position during general anaesthesia. Anaesth Intensive Care 1994; 22:586.
  22. Tadié JM, Behm E, Lecuyer L, et al. Post-intubation laryngeal injuries and extubation failure: a fiberoptic endoscopic study. Intensive Care Med 2010; 36:991.
  23. Friedman M, Baim H, Shelton V, et al. Laryngeal injuries secondary to nasogastric tubes. Ann Otol Rhinol Laryngol 1981; 90:469.
  24. Santos PM, Afrassiabi A, Weymuller EA Jr. Risk factors associated with prolonged intubation and laryngeal injury. Otolaryngol Head Neck Surg 1994; 111:453.
  25. Colton House J, Noordzij JP, Murgia B, Langmore S. Laryngeal injury from prolonged intubation: a prospective analysis of contributing factors. Laryngoscope 2011; 121:596.
  26. Kikura M, Suzuki K, Itagaki T, et al. Age and comorbidity as risk factors for vocal cord paralysis associated with tracheal intubation. Br J Anaesth 2007; 98:524.
  27. Walner DL, Stern Y, Gerber ME, et al. Gastroesophageal reflux in patients with subglottic stenosis. Arch Otolaryngol Head Neck Surg 1998; 124:551.
  28. Stone DJ, Bogdonoff DL. Airway considerations in the management of patients requiring long-term endotracheal intubation. Anesth Analg 1992; 74:276.
  29. Darmon JY, Rauss A, Dreyfuss D, et al. Evaluation of risk factors for laryngeal edema after tracheal extubation in adults and its prevention by dexamethasone. A placebo-controlled, double-blind, multicenter study. Anesthesiology 1992; 77:245.
  30. Poetker DM, Ettema SL, Blumin JH, et al. Association of airway abnormalities and risk factors in 37 subglottic stenosis patients. Otolaryngol Head Neck Surg 2006; 135:434.
  31. Dargin JM, Emlet LL, Guyette FX. The effect of body mass index on intubation success rates and complications during emergency airway management. Intern Emerg Med 2013; 8:75.
  32. Colice GL, Stukel TA, Dain B. Laryngeal complications of prolonged intubation. Chest 1989; 96:877.
  33. Hamdan AL, Sibai A, Rameh C, Kanazeh G. Short-term effects of endotracheal intubation on voice. J Voice 2007; 21:762.
  34. Kitahara S, Masuda Y, Kitagawa Y. Vocal fold injury following endotracheal intubation. J Laryngol Otol 2005; 119:825.
  35. Colice GL. Resolution of laryngeal injury following translaryngeal intubation. Am Rev Respir Dis 1992; 145:361.
  36. Sariego J. Vocal fold hypomobility secondary to elective endotracheal intubation: a general surgeon's perspective. J Voice 2010; 24:110.
  37. Sue RD, Susanto I. Long-term complications of artificial airways. Clin Chest Med 2003; 24:457.
  38. Weber S. Traumatic complications of airway management. Anesthesiol Clin North America 2002; 20:503.
  39. Myssiorek D. Recurrent laryngeal nerve paralysis: anatomy and etiology. Otolaryngol Clin North Am 2004; 37:25.
  40. Paulsen FP, Jungmann K, Tillmann BN. The cricoarytenoid joint capsule and its relevance to endotracheal intubation. Anesth Analg 2000; 90:180.
  41. Young VN, Smith LJ, Rosen C. Voice outcome following acute unilateral vocal fold paralysis. Ann Otol Rhinol Laryngol 2013; 122:197.
  42. Whited RE. A prospective study of laryngotracheal sequelae in long-term intubation. Laryngoscope 1984; 94:367.
  43. Koshkareva Y, Gaughan JP, Soliman AM. Risk factors for adult laryngotracheal stenosis: a review of 74 cases. Ann Otol Rhinol Laryngol 2007; 116:206.
  44. Anand VK, Alemar G, Warren ET. Surgical considerations in tracheal stenosis. Laryngoscope 1992; 102:237.
  45. Taha MS, Mostafa BE, Fahmy M, et al. Spiral CT virtual bronchoscopy with multiplanar reformatting in the evaluation of post-intubation tracheal stenosis: comparison between endoscopic, radiological and surgical findings. Eur Arch Otorhinolaryngol 2009; 266:863.
  46. Rahbar R, Shapshay SM, Healy GB. Mitomycin: effects on laryngeal and tracheal stenosis, benefits, and complications. Ann Otol Rhinol Laryngol 2001; 110:1.
  47. Lins M, Dobbeleir I, Germonpré P, et al. Postextubation obstructive pseudomembranes: a case series and review of a rare complication after endotracheal intubation. Lung 2011; 189:81.
  48. Kearl RA, Hooper RG. Massive airway leaks: an analysis of the role of endotracheal tubes. Crit Care Med 1993; 21:518.
  49. Kiekkas P, Aretha D, Panteli E, et al. Unplanned extubation in critically ill adults: clinical review. Nurs Crit Care 2013; 18:123.
  50. de Groot RI, Dekkers OM, Herold IH, et al. Risk factors and outcomes after unplanned extubations on the ICU: a case-control study. Crit Care 2011; 15:R19.
  51. Carrión MI, Ayuso D, Marcos M, et al. Accidental removal of endotracheal and nasogastric tubes and intravascular catheters. Crit Care Med 2000; 28:63.
  52. Kaplow R, Bookbinder M. A comparison of four endotracheal tube holders. Heart Lung 1994; 23:59.
  53. Carlson J, Mayrose J, Krause R, Jehle D. Extubation force: tape versus endotracheal tube holders. Ann Emerg Med 2007; 50:686.
  54. Gomaa D, Branson RD. Endotracheal tube holders and the prone position: a cause for concern. Respir Care 2015; 60:e41.
  55. Stauffer JL, Olson DE, Petty TL. Complications and consequences of endotracheal intubation and tracheotomy. A prospective study of 150 critically ill adult patients. Am J Med 1981; 70:65.
  56. Zwillich CW, Pierson DJ, Creagh CE, et al. Complications of assisted ventilation. A prospective study of 354 consecutive episodes. Am J Med 1974; 57:161.
  57. El-Orbany M, Salem MR. Endotracheal tube cuff leaks: causes, consequences, and management. Anesth Analg 2013; 117:428.
  58. Adair CG, Gorman SP, Feron BM, et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 1999; 25:1072.
  59. Olson ME, Harmon BG, Kollef MH. Silver-coated endotracheal tubes associated with reduced bacterial burden in the lungs of mechanically ventilated dogs. Chest 2002; 121:863.
  60. Berra L, De Marchi L, Yu ZX, et al. Endotracheal tubes coated with antiseptics decrease bacterial colonization of the ventilator circuits, lungs, and endotracheal tube. Anesthesiology 2004; 100:1446.
  61. Rello J, Kollef M, Diaz E, et al. Reduced burden of bacterial airway colonization with a novel silver-coated endotracheal tube in a randomized multiple-center feasibility study. Crit Care Med 2006; 34:2766.
  62. Kampf G, Wischnewski N, Schulgen G, et al. Prevalence and risk factors for nosocomial lower respiratory tract infections in German hospitals. J Clin Epidemiol 1998; 51:495.
  63. Rello J, Ausina V, Castella J, et al. Nosocomial respiratory tract infections in multiple trauma patients. Influence of level of consciousness with implications for therapy. Chest 1992; 102:525.
  64. Nseir S, Di Pompeo C, Pronnier P, et al. Nosocomial tracheobronchitis in mechanically ventilated patients: incidence, aetiology and outcome. Eur Respir J 2002; 20:1483.
  65. Dallas J, Skrupky L, Abebe N, et al. Ventilator-associated tracheobronchitis in a mixed surgical and medical ICU population. Chest 2011; 139:513.
  66. Nseir S, Povoa P, Salluh J, et al. Is there a continuum between ventilator-associated tracheobronchitis and ventilator-associated pneumonia? Intensive Care Med 2016; 42:1190.
  67. Nseir S, Favory R, Jozefowicz E, et al. Antimicrobial treatment for ventilator-associated tracheobronchitis: a randomized, controlled, multicenter study. Crit Care 2008; 12:R62.
  68. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008; 36:309.
  69. Nseir S, Di Pompeo C, Soubrier S, et al. Outcomes of ventilated COPD patients with nosocomial tracheobronchitis: a case-control study. Infection 2004; 32:210.
  70. Palmer LB, Smaldone GC, Chen JJ, et al. Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit Care Med 2008; 36:2008.
  71. George DL, Falk PS, Umberto Meduri G, et al. Nosocomial sinusitis in patients in the medical intensive care unit: a prospective epidemiological study. Clin Infect Dis 1998; 27:463.
  72. Holzapfel L, Chevret S, Madinier G, et al. Influence of long-term oro- or nasotracheal intubation on nosocomial maxillary sinusitis and pneumonia: results of a prospective, randomized, clinical trial. Crit Care Med 1993; 21:1132.
  73. Pneumatikos I, Konstantonis D, Tsagaris I, et al. Prevention of nosocomial maxillary sinusitis in the ICU: the effects of topically applied alpha-adrenergic agonists and corticosteroids. Intensive Care Med 2006; 32:532.
  74. Rouby JJ, Laurent P, Gosnach M, et al. Risk factors and clinical relevance of nosocomial maxillary sinusitis in the critically ill. Am J Respir Crit Care Med 1994; 150:776.
  75. Salord F, Gaussorgues P, Marti-Flich J, et al. Nosocomial maxillary sinusitis during mechanical ventilation: a prospective comparison of orotracheal versus the nasotracheal route for intubation. Intensive Care Med 1990; 16:390.
  76. Heffner JE. Nosocomial sinusitis. Den of multiresistant thieves? Am J Respir Crit Care Med 1994; 150:608.
  77. Hilbert G, Vargas F, Valentino R, et al. Comparison of B-mode ultrasound and computed tomography in the diagnosis of maxillary sinusitis in mechanically ventilated patients. Crit Care Med 2001; 29:1337.
  78. Souweine B, Mom T, Traore O, et al. Ventilator-associated sinusitis: microbiological results of sinus aspirates in patients on antibiotics. Anesthesiology 2000; 93:1255.
  79. Casiano RR, Cohn S, Villasuso E 3rd, et al. Comparison of antral tap with endoscopically directed nasal culture. Laryngoscope 2001; 111:1333.
  80. Talmor M, Li P, Barie PS. Acute paranasal sinusitis in critically ill patients: guidelines for prevention, diagnosis, and treatment. Clin Infect Dis 1997; 25:1441.
  81. Westergren V, Lundblad L, Hellquist HB, Forsum U. Ventilator-associated sinusitis: a review. Clin Infect Dis 1998; 27:851.
  82. Le Moal G, Lemerre D, Grollier G, et al. Nosocomial sinusitis with isolation of anaerobic bacteria in ICU patients. Intensive Care Med 1999; 25:1066.
  83. Geiss HK. Nosocomial sinusitis. Intensive Care Med 1999; 25:1037.
  84. Barquist E, Brown M, Cohn S, et al. Postextubation fiberoptic endoscopic evaluation of swallowing after prolonged endotracheal intubation: a randomized, prospective trial. Crit Care Med 2001; 29:1710.
  85. Barker J, Martino R, Reichardt B, et al. Incidence and impact of dysphagia in patients receiving prolonged endotracheal intubation after cardiac surgery. Can J Surg 2009; 52:119.
  86. Skoretz SA, Flowers HL, Martino R. The incidence of dysphagia following endotracheal intubation: a systematic review. Chest 2010; 137:665.
  87. Peterson SJ, Tsai AA, Scala CM, et al. Adequacy of oral intake in critically ill patients 1 week after extubation. J Am Diet Assoc 2010; 110:427.
  88. Payne DK, Anderson WM, Romero MD, et al. Tracheoesophageal fistula formation in intubated patients. Risk factors and treatment with high-frequency jet ventilation. Chest 1990; 98:161.
  89. Harley HR. Ulcerative tracheo-oesophageal fistula during treatment by tracheostomy and intermittent positive pressure ventilation. Thorax 1972; 27:338.
  90. Mooty RC, Rath P, Self M, et al. Review of tracheo-esophageal fistula associated with endotracheal intubation. J Surg Educ 2007; 64:237.
  91. Reed MF, Mathisen DJ. Tracheoesophageal fistula. Chest Surg Clin N Am 2003; 13:271.
  92. Bibas BJ, Guerreiro Cardoso PF, Minamoto H, et al. Surgical Management of Benign Acquired Tracheoesophageal Fistulas: A Ten-Year Experience. Ann Thorac Surg 2016; 102:1081.
  93. Dartevelle P, Macchiarini P. Management of acquired tracheoesophageal fistula. Chest Surg Clin N Am 1996; 6:819.
  94. Sanwal MK, Ganjoo P, Tandon MS. Posttracheostomy tracheoesophageal fistula. J Anaesthesiol Clin Pharmacol 2012; 28:140.
  95. Li J, Gao X, Chen J, et al. Endoscopic closure of acquired oesophagorespiratory fistulas with cardiac septal defect occluders or vascular plugs. Respir Med 2015; 109:1069.
  96. Erdim I, Sirin AA, Baykal B, et al. Treatment of large persistent tracheoesophageal peristomal fistulas using silicon rings. Braz J Otorhinolaryngol 2016.
  97. Hammoudeh ZS, Gursel E, Baciewicz FA Jr. Split latissimus dorsi muscle flap repair of acquired, nonmalignant, intrathoracic tracheoesophageal and bronchoesophageal fistulas. Heart Lung Circ 2015; 24:e75.
  98. Muniappan A, Wain JC, Wright CD, et al. Surgical treatment of nonmalignant tracheoesophageal fistula: a thirty-five year experience. Ann Thorac Surg 2013; 95:1141.
  99. Daniel SJ, Smith MM. Tracheoesophageal fistula: open versus endoscopic repair. Curr Opin Otolaryngol Head Neck Surg 2016.
  100. Mort TC, Braffett BH. Conventional Versus Video Laryngoscopy for Tracheal Tube Exchange: Glottic Visualization, Success Rates, Complications, and Rescue Alternatives in the High-Risk Difficult Airway Patient. Anesth Analg 2015; 121:440.
  101. Buis ML, Maissan IM, Hoeks SE, et al. Defining the learning curve for endotracheal intubation using direct laryngoscopy: A systematic review. Resuscitation 2016; 99:63.